2,136 research outputs found

    Experimental evidence for new symmetry axis of electromagnetic beams

    Full text link
    The new symmetry axis of a well-behaved electromagnetic beam advanced in paper Physical Review A 78, 063831 (2008) is not purely a mathematical concept. The experimental result reported by Hosten and Kwiat in paper Science 319, 787 (2008) is shown to demonstrate the existence of this symmetry axis that is neither perpendicular nor parallel to the propagation axis.Comment: 10 pages and 3 figure

    Field theory of massive and massless vector particles in the Duffin - Kemmer - Petiau formalism

    Full text link
    Field theory of massive and massless vector particles is considered in the first-order formalism. The Hamiltonian form of equations is obtained after the exclusion of non-dynamical components. We obtain the canonical and symmetrical Belinfante energy-momentum tensors and their nonzero traces. We note that the dilatation symmetry is broken in the massive case but in the massless case the modified dilatation current is conserved. The canonical quantization is performed and the propagator of the massive fields is found in the Duffin - Kemmer - Petiau formalism.Comment: 20 pages, typos corrected, a reference added, journal version, accepted in Int.J.Mod.Phys.

    Solutions of Podolsky's Electrodynamics Equation in the First-Order Formalism

    Full text link
    The Podolsky generalized electrodynamics with higher derivatives is formulated in the first-order formalism. The first-order relativistic wave equation in the 20-dimensional matrix form is derived. We prove that the matrices of the equation obey the Petiau-Duffin-Kemmer algebra. The Hermitianizing matrix and Lagrangian in the first-order formalism are given. The projection operators extracting solutions of field equations for states with definite energy-momentum and spin projections are obtained, and we find the density matrix for the massive state. The 13×1313\times 13-matrix Schrodinger form of the equation is derived, and the Hamiltonian is obtained. Projection operators extracting the physical eigenvalues of the Hamiltonian are found.Comment: 17 pages, minor corrections, published versio

    Cosmic ray modulation in a random anisotropic magnetic field

    Get PDF
    Inhomogeneities of the interplanetary magnetic field can be divided into small scale and large scale ones as may be required by the character of the problem of cosmic ray (CR) propagation. CR propagation in stochastic magnetic fields is of diffusion character. The main contribution into the scattering of CR particles is made by their interaction with inhomogeneities of the magnetic field H which have characteristic dimensions 1 of the order of Larmor radius R=cp/eH of particle (p is the absolute value of particle momentum, e is particle charge, c is velocity of light). Scattering of particles on such inhomogeneities leads to their diffusion mostly along a magnetic field with characteristic dimensions of variation in space exceeding the mean free path

    Kalb-Ramond fields in the Petiau-Duffin-Kemmer formalism and scale invariance

    Full text link
    Kalb-Ramond equations for massive and massless particles are considered in the framework of the Petiau-Duffin-Kemmer formalism. We obtain 10×1010\times10 matrices of the relativistic wave equation of the first-order and solutions in the form of density matrix. The canonical and Belinfante energy-momentum tensors are found. We investigate the scale invariance and obtain the conserved dilatation current. It was demonstrated that the conformal symmetry is broken even for massless fields.Comment: 9 pages, no figure

    On calculating the Berry curvature of Bloch electrons using the KKR method

    Full text link
    We propose and implement a particularly effective method for calculating the Berry curvature arising from adiabatic evolution of Bloch states in wave vector k space. The method exploits a unique feature of the Korringa-Kohn-Rostoker (KKR) approach to solve the Schr\"odinger or Dirac equations. Namely, it is based on the observation that in the KKR method k enters the calculation via the structure constants which depend only on the geometry of the lattice but not the crystal potential. For both the Abelian and non-Abelian Berry curvature we derive an analytic formula whose evaluation does not require any numerical differentiation with respect to k. We present explicit calculations for Al, Cu, Au, and Pt bulk crystals.Comment: 13 pages, 5 figure

    Spectral and polarization effects in deterministically nonperiodic multilayers containing optically anisotropic and gyrotropic materials

    Get PDF
    Influence of material anisotropy and gyrotropy on optical properties of fractal multilayer nanostructures is theoretically investigated. Gyrotropy is found to uniformly rotate the output polarization for bi-isotropic multilayers of arbitrary geometrical structure without any changes in transmission spectra. When introduced in a polarization splitter based on a birefringent fractal multilayer, isotropic gyrotropy is found to resonantly alter output polarizations without shifting of transmission peak frequencies. The design of frequency-selective absorptionless polarizers for polarization-sensitive integrated optics is outlined

    Local Phonon Density of States in an Elastic Substrate

    Full text link
    The local, eigenfunction-weighted acoustic phonon density of states (DOS) tensor is calculated for a model substrate consisting of a semi-infinite isotropic elastic continuum with a stress-free surface. On the surface, the local DOS is proportional to the square of the frequency, as for the three-dimensional Debye model, but with a constant of proportionality that is considerably enhanced compared to the Debye value, a consequence of the Rayleigh surface modes. The local DOS tensor at the surface is also anisotropic, as expected. Inside the substrate the local DOS is both spatially anisotropic and non-quadratic in frequency. However, at large depths, the local DOS approaches the isotropic Debye value. The results are applied to a Si substrate.Comment: 7 pages, 2 figures, RevTe

    The Effective Fragment Molecular Orbital Method for Fragments Connected by Covalent Bonds

    Get PDF
    We extend the effective fragment molecular orbital method (EFMO) into treating fragments connected by covalent bonds. The accuracy of EFMO is compared to FMO and conventional ab initio electronic structure methods for polypeptides including proteins. Errors in energy for RHF and MP2 are within 2 kcal/mol for neutral polypeptides and 6 kcal/mol for charged polypeptides similar to FMO but obtained two to five times faster. For proteins, the errors are also within a few kcal/mol of the FMO results. We developed both the RHF and MP2 gradient for EFMO. Compared to ab initio, the EFMO optimized structures had an RMSD of 0.40 and 0.44 {\AA} for RHF and MP2, respectively.Comment: Revised manuscrip
    • …
    corecore