83 research outputs found

    Effects of early and late diabetic neuropathy on sciatic nerve block duration and neurotoxicity in Zucker diabetic fatty rats

    Get PDF
    Background The neuropathy of type II diabetes mellitus (DM) is increasing in prevalence worldwide. We aimed to test the hypothesis that in a rodent model of type II DM, neuropathy would lead to increased neurotoxicity and block duration after lidocaine-induced sciatic nerve block when compared with control animals. Methods Experiments were carried out in Zucker diabetic fatty rats aged 10 weeks (early diabetic) or 18 weeks (late diabetic, with or without insulin 3 units per day), and age-matched healthy controls. Left sciatic nerve block was performed using 0.2 ml lidocaine 2%. Nerve conduction velocity (NCV) and F-wave latency were used to quantify nerve function before, and 1 week after nerve block, after which sciatic nerves were used for neurohistopathology. Results Early diabetic animals did not show increased signs of nerve dysfunction after nerve block. In late diabetic animals without insulin vs control animals, NCV was 34.8 (5.0) vs 41.1 (4.1) ms s−1 (P<0.01), and F-wave latency was 7.7 (0.5) vs 7.0 (0.2) ms (P<0.01), respectively. Motor nerve block duration was prolonged in late diabetic animals, but neurotoxicity was not. Late diabetic animals receiving insulin showed intermediate results. Conclusions In a rodent type II DM model, nerves have increased sensitivity for short-acting local anaesthetics without adjuvants in vivo, as evidenced by prolonged block duration. This sensitivity appears to increase with the progression of neuropathy. Our results do not support the hypothesis that neuropathy due to type II DM increases the risk of nerve injury after nerve bloc

    Nitric oxide synthase isoforms play distinct roles during acute peritonitis

    Get PDF
    Background. Acute peritonitis is the most frequent complication of peritoneal dialysis (PD). Increased nitric oxide (NO) release by NO synthase (NOS) isoforms has been implicated in acute peritonitis, but the role played by the NOS isoforms expressed in the peritoneum is unknown

    Failed epidural: causes and management

    No full text
    Failed epidural anaesthesia or analgesia is more frequent than generally recognized. We review the factors known to influence the success rate of epidural anaesthesia. Reasons for an inadequate epidural block include incorrect primary placement, secondary migration of a catheter after correct placement, and suboptimal dosing of local anaesthetic drugs. For catheter placement, the loss of resistance using saline has become the most widely used method. Patient positioning, the use of a midline or paramedian approach, and the method used for catheter fixation can all influence the success rate. When using equipotent doses, the difference in clinical effect between bupivacaine and the newer isoforms levobupivacaine and ropivacaine appears minimal. With continuous infusion, dose is the primary determinant of epidural anaesthesia quality, with volume and concentration playing a lesser role. Addition of adjuvants, especially opioids and epinephrine, may substantially increase the success rate of epidural analgesia. Adjuvant opioids may have a spinal or supraspinal action. The use of patient-controlled epidural analgesia with background infusion appears to be the best method for postoperative analgesi

    Cisatracurium, but not mivacurium, induces apoptosis in human umbilical vein endothelial cells in vitro

    No full text
    Cisatracurium is an intermediate acting, non-depolarizing neuromuscular blocking agent. Previous reports have indicated a growth-inhibitory effect of the isoforms cisatracurium and atracurium on two human cell lines in vitro. These effects were ascribed to oxidative stress elicited by acrylate esters formed during cisatracurium breakdown. Oxidative stress is a potent precipitator of apoptosis. Therefore, the aim of the present study was to investigate whether the growth-inhibitory effects of cisatracurium could be explained by initiation of apoptosis. Human umbilical vein endothelial cells were incubated with cisatracurium at concentrations of 0.96, 3.2, 9.6, 32 and 96 micromol for 24 h. DNA fragmentation was measured using the Cell Death Detection ELISA Plus assay (Roche Diagnostics, Mannheim, Germany). There was a dose dependency of cisatracurium with respect to the rate of apoptosis in human umbilical vein endothelial cells. Programmed cell death could be demonstrated at concentrations encountered in human plasma after single-bolus injections of cisatracurium. Apoptosis was attenuated by the concomitant administration of glutathione. These findings strongly support the hypothesis that acrylate esters, breakdown products of cisatracurium, induce oxidative stress and, subsequently, apoptosi

    Time-dependent modulation of muscarinic m1/m3 receptor signalling by local anaesthetics

    No full text
    Signalling of several G-protein-coupled receptors of the Gq/11 family is time-dependently inhibited by local anaesthetics (LAs). Since LA-induced modulation of muscarinic m1 and m3 receptor function may explain their beneficial effects in clinical practice, such as decreased postoperative cognitive dysfunction or less bronchoconstriction, we studied how prolonged exposure affects muscarinic signalling (Wang D, Wu X, Li J, Xiao F, Liu X, Meng M. The effect of lidocaine on early postoperative cognitive dysfunction after coronary artery bypass surgery. Anesth Analg 2002; 95: 1134-41; Groeben H, Silvanus MT, Beste M, Peters J. Combined lidocaine and salbutamol inhalation for airway anesthesia markedly protects against reflex bronchoconstriction. Chest 2000; 118: 509-15). A two-electrode voltage clamp was used to assess the effects of lidocaine or its permanently charged analogue QX314 on recombinantly expressed m1 and m3 receptors in Xenopus oocytes. Antisense knock-down of functional Gαq-protein and inhibition of protein kinase C (PKC) served to define mechanisms and sites of action. Lidocaine affected muscarinic signalling in a biphasic way: an initial decrease in methylcholine bromide-elicited m1 and m3 responses after 30 min, followed by a significant increase in muscarinic responses after 8 h. Intracellularly injected QX314 time-dependently inhibited muscarinic signalling, but had no effect in Gαq-depleted oocytes. PKC-antagonism enhanced m1 and m3 signalling, but completely abolished the LA-induced increase in muscarinic responses, unmasking an underlying time-dependent inhibition of m1 and m3 responses after 8 h. Lidocaine modulates muscarinic m1 and m3 receptors in a time- and Gαq-dependent manner, but this is masked by enhanced PKC activity. The biphasic time course may be due to interactions of LAs with an extracellular receptor domain, modulated by PKC activity. Prolonged exposure to LAs may not benefit pulmonary function, but may positively affect postoperative cognitive functio

    Molecular mechanisms of action of systemic lidocaine in acute and chronic pain: a narrative review

    No full text
    Systemic administration of the local anaesthetic lidocaine is antinociceptive in both acute and chronic pain states, especially in acute postoperative and chronic neuropathic pain. These effects cannot be explained by its voltage-gated sodium channel blocking properties alone, but the responsible mechanisms are still elusive. This narrative review focuses on available experimental evidence of the molecular mechanisms by which systemic lidocaine exerts its clinically documented analgesic effects. These include effects on the peripheral nervous system and CNS, where lidocaine acts via silencing ectopic discharges, suppression of inflammatory processes, and modulation of inhibitory and excitatory neurotransmission. We highlight promising objectives for future research to further unravel these antinociceptive mechanisms, which subsequently may facilitate the development of new analgesic strategies and therapies for acute and chronic pain
    • …
    corecore