13,905 research outputs found
Numerical evidences of spin-1/2 chain approaching spin-1 chain
In this article, we study the one dimensional Heisenberg spin-1/2 alternating
bond chain in which the nearest neighbor exchange couplings are ferromagnetic
(FM) and antiferromagnetic (AF) alternatively. By using exact diagonalization
and density matrix renormalization groups (DMRG) method, we discuss how the
system approaches to the AF uniform spin-1 chain under certain condition. When
the ratio of AF to FM coupling strength}
\textit{is very small, the physical quantities of the alternating bond chain
such as the spin-spin correlation, the string correlation function and the spin
density coincide with that of the AF uniform spin-1 chain. The edge state
problem is discussed in the present model with small}\textit{limit. In
addition, the Haldane gap of the AF uniform spin-1 chain is 4-times of the gap
of the system considered.Comment: 9pages,8page
Dynamical coupled-channel model of kaon-hyperon interactions
The pi N --> KY and KY --> KY reactions are studied using a dynamical
coupled-channel model of meson-baryon interactions at energies where the baryon
resonances are strongly excited. The channels included are: pi N, K \Lambda,
and K\Sigma. The resonances considered are: N^* [S_{11}(1650), P_{11}(1710),
P_{13}(1720),D_{13}(1700)]; \Delta^* [S_{31}(1900), P_{31}(1910),
P_{33}(1920)]; \Lambda ^* [S_{01}(1670), P_{01}(1810)] \Sigma^* [P_{11}(1660),
D_{13}(1670)]; and K^*(892). The basic non-resonant \pi N --> KY and KY --> KY
transition potentials are derived from effective Lagrangians using a unitary
transformation method. The dynamical coupled-channel equations are simplified
by parametrizing the pi N -->pi N amplitudes in terms of empirical pi N
partial-wave amplitudes and a phenomenological off-shell function. Two models
have been constructed. Model A is built by fixing all coupling constants and
resonance parameters using SU(3) symmetry, the Particle Data Group values, and
results from a constituent quark model. Model B is obtained by allowing most of
the parameters to vary around the values of model A in fitting the data. Good
fits to the available data for pi^- p to K^0 \Lambda, K^0 \Sigma^0 have been
achieved. The investigated kinematics region in the center-of-mass frame goes
from threshold to 2.5 GeV. The constructed models can be imbedded into
associated dynamical coupled-channel studies of kaon photo- and
electro-production reactions.Comment: 35 pages, 11 Figure
Evidence of early multi-strange hadron freeze-out in high energy nuclear collisions
Recently reported transverse momentum distributions of strange hadrons
produced in Pb(158AGeV) on Pb collisions and corresponding results from the
relativistic quantum molecular dynamics (RQMD) approach are examined. We argue
that the experimental observations favor a scenario in which multi-strange
hadrons are formed and decouple from the system rather early at large energy
densities (around 1 GeV/fm). The systematics of the strange and non-strange
particle spectra indicate that the observed transverse flow develops mainly in
the late hadronic stages of these reactions.Comment: 4 pages, 4 figure
Quantisations of piecewise affine maps on the torus and their quantum limits
For general quantum systems the semiclassical behaviour of eigenfunctions in
relation to the ergodic properties of the underlying classical system is quite
difficult to understand. The Wignerfunctions of eigenstates converge weakly to
invariant measures of the classical system, the so called quantum limits, and
one would like to understand which invariant measures can occur that way,
thereby classifying the semiclassical behaviour of eigenfunctions. We introduce
a class of maps on the torus for whose quantisations we can understand the set
of quantum limits in great detail. In particular we can construct examples of
ergodic maps which have singular ergodic measures as quantum limits, and
examples of non-ergodic maps where arbitrary convex combinations of absolutely
continuous ergodic measures can occur as quantum limits. The maps we quantise
are obtained by cutting and stacking
The Stony Brook / SMARTS Atlas of mostly Southern Novae
We introduce the Stony Brook / SMARTS Atlas of (mostly) Southern Novae. This
atlas contains both spectra and photometry obtained since 2003. The data
archived in this atlas will facilitate systematic studies of the nova
phenomenon and correlative studies with other comprehensive data sets. It will
also enable detailed investigations of individual objects. In making the data
public we hope to engender more interest on the part of the community in the
physics of novae. The atlas is on-line at
\url{http://www.astro.sunysb.edu/fwalter/SMARTS/NovaAtlas/} .Comment: 11 figures; 5 table
On-chip titration of an anticoagulant argatroban and determination of the clotting time within whole blood or plasma using a plug-based microfluidic system
This paper describes extending plug-based microfluidics to handling complex biological fluids such as blood, solving the problem of injecting additional reagents into plugs, and applying this system to measuring of clotting time in small volumes of whole blood and plasma. Plugs are droplets transported through microchannels by fluorocarbon fluids. A plug-based microfluidic system was developed to titrate an anticoagulant (argatroban) into blood samples and to measure the clotting time using the activated partial thromboplastin time (APTT) test. To carry out these experiments, the following techniques were developed for a plug-based system: (i) using Teflon AF coating on the microchannel wall to enable formation of plugs containing blood and transport of the solid fibrin clots within plugs, (ii) using a hydrophilic glass capillary to enable reliable merging of a reagent from an aqueous stream into plugs, (iii) using bright-field microscopy to detect the formation of a fibrin clot within plugs and using fluorescent microscopy to detect the production of thrombin using a fluorogenic substrate, and (iv) titration of argatroban (0-1.5 mu g/mL) into plugs and measurement of the resulting APTTs at room temperature (23 degrees C) and physiological temperature (37 degrees C). APTT measurements were conducted with normal pooled plasma (platelet-poor plasma) and with donor's blood samples ( both whole blood and platelet-rich plasma). APTT values and APTT ratios measured by the plug-based microfluidic device were compared to the results from a clinical laboratory at 37 degrees C. APTT obtained from the on-chip assay were about double those from the clinical laboratory but the APTT ratios from these two methods agreed well with each other
Uncertainties of the Inclusive Higgs Production Cross Section at the Tevatron and the LHC
We study uncertainties of the predicted inclusive Higgs production cross
section due to the uncertainties of parton distribution functions (PDF).
Particular attention is given to bbH Yukawa coupling enhanced production
mechanisms in beyond SM scenarios, such as MSSM. The PDF uncertainties are
determined by the robust Lagrange Multiplier method within the CTEQ global
analysis framework. We show that PDF uncertainties dominate over theoretical
uncertainties of the perturbative calculation (usually estimated by the scale
dependence of the calculated cross sections), except for low Higgs masses at
LHC. Thus for the proper interpretation of any Higgs signal, and for better
understanding of the underlying electroweak symmetry breaking mechanism, it is
important to gain better control of the uncertainties of the PDFs.Comment: LaTeX, JHEP, 19 pages, 14 figure
Cosmological spacetimes balanced by a scale covariant scalar field
A scale invariant, Weyl geometric, Lagrangian approach to cosmology is
explored, with a a scalar field phi of (scale) weight -1 as a crucial
ingredient besides classical matter \cite{Tann:Diss,Drechsler:Higgs}. For a
particularly simple class of Weyl geometric models (called {\em Einstein-Weyl
universes}) the Klein-Gordon equation for phi is explicitly solvable. In this
case the energy-stress tensor of the scalar field consists of a vacuum-like
term Lambda g_{mu nu} with variable coefficient Lambda, depending on matter
density and spacetime geometry, and of a dark matter like term. Under certain
assumptions on parameter constellations, the energy-stress tensor of the
phi-field keeps Einstein-Weyl universes in locally stable equilibrium. A short
glance at observational data, in particular supernovae Ia (Riess ea 2007),
shows interesting empirical properties of these models.Comment: 28 pages, 1 figure, accepted by Foundations of Physic
Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity.
Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour
- …
