5,288 research outputs found
Lower lid entropion secondary to treatment with alpha-1a receptor antagonist: a case report
<p>Abstract</p> <p>Introduction</p> <p>The use of alpha-1a receptor antagonists (tamsulosin) is widely accepted in the treatment of benign prostatic hypertrophy (BPH). It has previously been implicated as a causative agent in intra-operative floppy iris syndrome due to its effects on the smooth muscle. We report a case of lower lid entropion that may be related to a patient commencing treatment of tamsulosin.</p> <p>Case presentation</p> <p>A 74-year-old Caucasian man was started on alpha 1-a receptor antagonist (Tamsulosin) treatment for benign prostatic hypertrophy. Eight days later, he presented to the ophthalmology unit with a right lower lid entropion which was successfully treated surgically with a Weiss procedure.</p> <p>Conclusion</p> <p>We report a case of lower lid entropion that may be secondary to the recent use of an alpha-1a blocker (tamsulosin). This can be explained by considering the effect of autonomic blockade on alpha-1 receptors in the Muller's muscle on a patient that may already have an anatomical predisposition to entropion formation due to a further reduction in muscle tone.</p
Video enhancement using adaptive spatio-temporal connective filter and piecewise mapping
This paper presents a novel video enhancement system based on an adaptive spatio-temporal connective (ASTC) noise filter and an adaptive piecewise mapping function (APMF). For ill-exposed videos or those with much noise, we first introduce a novel local image statistic to identify impulse noise pixels, and then incorporate it into the classical bilateral filter to form ASTC, aiming to reduce the mixture of the most two common types of noises - Gaussian and impulse noises in spatial and temporal directions. After noise removal, we enhance the video contrast with APMF based on the statistical information of frame segmentation results. The experiment results demonstrate that, for diverse low-quality videos corrupted by mixed noise, underexposure, overexposure, or any mixture of the above, the proposed system can automatically produce satisfactory results
Rectification of electronic heat current by a hybrid thermal diode
We report the realization of an ultra-efficient low-temperature hybrid heat
current rectifier, thermal counterpart of the well-known electric diode. Our
design is based on a tunnel junction between two different elements: a normal
metal and a superconducting island. Electronic heat current asymmetry in the
structure arises from large mismatch between the thermal properties of these
two. We demonstrate experimentally temperature differences exceeding mK
between the forward and reverse thermal bias configurations. Our device offers
a remarkably large heat rectification ratio up to and allows its
prompt implementation in true solid-state thermal nanocircuits and
general-purpose electronic applications requiring energy harvesting or thermal
management and isolation at the nanoscale.Comment: 8 pages, 6 color figure
Voxel-wise comparisons of cellular microstructure and diffusion-MRI in mouse hippocampus using 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND)
A key challenge in medical imaging is determining a precise correspondence between image properties and tissue microstructure. This comparison is hindered by disparate scales and resolutions between medical imaging and histology. We present a new technique, 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND), for registering medical images with 3D histology to overcome these limitations. Ex vivo 120 × 120 × 200 μm resolution diffusion-MRI (dMRI) data was acquired at 7 T from adult C57Bl/6 mouse hippocampus. Tissue was then optically cleared using CLARITY and stained with cellular markers and confocal microscopy used to produce high-resolution images of the 3D-tissue microstructure. For each sample, a dense array of hippocampal landmarks was used to drive registration between upsampled dMRI data and the corresponding confocal images. The cell population in each MRI voxel was determined within hippocampal subregions and compared to MRI-derived metrics. 3D-BOND provided robust voxel-wise, cellular correlates of dMRI data. CA1 pyramidal and dentate gyrus granular layers had significantly different mean diffusivity (p > 0.001), which was related to microstructural features. Overall, mean and radial diffusivity correlated with cell and axon density and fractional anisotropy with astrocyte density, while apparent fibre density correlated negatively with axon density. Astrocytes, axons and blood vessels correlated to tensor orientation
Evaluation of the influence of kyphosis and scoliosis on intervertebral disc extrusion in French bulldogs
Although thoracic vertebral malformations with kyphosis and scoliosis are often considered incidental findings on diagnostic imaging studies of screw-tailed brachycephalic breeds, they have been suggested to interfere with spinal biomechanics and intervertebral disc degeneration. It is however unknown if an abnormal spinal curvature also predisposes dogs to develop clinically relevant intervertebral disc herniations. The aim of this study was to evaluate if the occurrence of thoracic vertebral malformations, kyphosis or scoliosis would be associated with a higher prevalence of cervical or thoracolumbar intervertebral disc extrusion in French bulldogs
Entanglement Entropy of 3-d Conformal Gauge Theories with Many Flavors
Three-dimensional conformal field theories (CFTs) of deconfined gauge fields
coupled to gapless flavors of fermionic and bosonic matter describe quantum
critical points of condensed matter systems in two spatial dimensions. An
important characteristic of these CFTs is the finite part of the entanglement
entropy across a circle. The negative of this quantity is equal to the finite
part of the free energy of the Euclidean CFT on the three-sphere, and it has
been proposed to satisfy the so called F-theorem, which states that it
decreases under RG flow and is stationary at RG fixed points. We calculate the
three-sphere free energy of non-supersymmetric gauge theory with a large number
N_F of bosonic and/or fermionic flavors to the first subleading order in 1/N_F.
We also calculate the exact free energies of the analogous chiral and
non-chiral {\cal N} = 2 supersymmetric theories using localization, and find
agreement with the 1/N_F expansion. We analyze some RG flows of supersymmetric
theories, providing further evidence for the F-theorem.Comment: 31 pages, 2 figures; v2 refs added, minor change
Improving the Alignment Quality of Consistency Based Aligners with an Evaluation Function Using Synonymous Protein Words
Most sequence alignment tools can successfully align protein sequences with higher levels of sequence identity. The accuracy of corresponding structure alignment, however, decreases rapidly when considering distantly related sequences (<20% identity). In this range of identity, alignments optimized so as to maximize sequence similarity are often inaccurate from a structural point of view. Over the last two decades, most multiple protein aligners have been optimized for their capacity to reproduce structure-based alignments while using sequence information. Methods currently available differ essentially in the similarity measurement between aligned residues using substitution matrices, Fourier transform, sophisticated profile-profile functions, or consistency-based approaches, more recently
Animated molecular dynamics simulations of hydrated caesium-smectite interlayers
Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers) provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs(+ )formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs(+ )within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs(+ )for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs(+ )and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output
Low-frequency cortical activity is a neuromodulatory target that tracks recovery after stroke.
Recent work has highlighted the importance of transient low-frequency oscillatory (LFO; <4 Hz) activity in the healthy primary motor cortex during skilled upper-limb tasks. These brief bouts of oscillatory activity may establish the timing or sequencing of motor actions. Here, we show that LFOs track motor recovery post-stroke and can be a physiological target for neuromodulation. In rodents, we found that reach-related LFOs, as measured in both the local field potential and the related spiking activity, were diminished after stroke and that spontaneous recovery was closely correlated with their restoration in the perilesional cortex. Sensorimotor LFOs were also diminished in a human subject with chronic disability after stroke in contrast to two non-stroke subjects who demonstrated robust LFOs. Therapeutic delivery of electrical stimulation time-locked to the expected onset of LFOs was found to significantly improve skilled reaching in stroke animals. Together, our results suggest that restoration or modulation of cortical oscillatory dynamics is important for the recovery of upper-limb function and that they may serve as a novel target for clinical neuromodulation
- …