36,869 research outputs found

    Geography and intra-national home bias : U.S. domestic trade in 1949 and 2007

    Get PDF
    This paper examines home bias in U.S. domestic trade in 1949 and 2007. We use a unique data set of 1949 carload waybill statistics produced by the Interstate Commerce Commission, and 2007 Commodity Flow Survey data. The results show that home bias was considerably smaller in 1949 than in 2007 and that home bias in 1949 was even negative for several commodities. We argue that the difference between the geographical distribution of the manufacturing activities in 1949 and that of 2007 is an important factor explaining the differences in the magnitudes of home-bias estimates in those years

    Making sense of the manufacturing belt : determinants of U.S. industrial location, 1880-1920

    Get PDF
    This paper investigates the ability of the new economic geography to explain the persistence of the manufacturing belt in the United States around the turn of the 20th century using a model which subsumes both market-potential and factor-endowment arguments. The results show that market potential was central to the existence of the manufacturing belt, that it mattered more than factor endowments, and that its impact came through interactions both with scale economies and with linkage effects. Natural advantage played a role in industrial location but only through agricultural inputs which were important for a small subset of manufacturing

    Monopole Planets and Galaxies

    Full text link
    Spherical clusters of SU(2) BPS monopoles are investigated here. A large class of monopole solutions is found using an abelian approximation, where the clusters are spherically symmetric, although exact solutions cannot have this symmetry precisely. Monopole clusters generalise the Bolognesi magnetic bag solution of the same charge, but they are always larger. Selected density profiles give structures analogous to planets of uniform density, and galaxies with a density decaying as the inverse square of the distance from the centre. The Bolognesi bag itself has features analogous to a black hole, and this analogy between monopole clusters and astrophysical objects with or without black holes in their central region is developed further. It is also shown that certain exact, platonic monopoles of small charge have sizes and other features consistent with what is expected for magnetic bags.Comment: 23 pages. Revised version to appear in Physical Review D. New introduction and conclusions; analogy between monopoles and astrophysical objects developed furthe

    Quantum theory of large amplitude collective motion and the Born-Oppenheimer method

    Get PDF
    We study the quantum foundations of a theory of large amplitude collective motion for a Hamiltonian expressed in terms of canonical variables. In previous work the separation into slow and fast (collective and non-collective) variables was carried out without the explicit intervention of the Born Oppenheimer approach. The addition of the Born Oppenheimer assumption not only provides support for the results found previously in leading approximation, but also facilitates an extension of the theory to include an approximate description of the fast variables and their interaction with the slow ones. Among other corrections, one encounters the Berry vector and scalar potential. The formalism is illustrated with the aid of some simple examples, where the potentials in question are actually evaluated and where the accuracy of the Born Oppenheimer approximation is tested. Variational formulations of both Hamiltonian and Lagrangian type are described for the equations of motion for the slow variables.Comment: 29 pages, 1 postscript figure, preprint no UPR-0085NT. Latex + epsf styl

    Near-Optimal Distributed Approximation of Minimum-Weight Connected Dominating Set

    Full text link
    This paper presents a near-optimal distributed approximation algorithm for the minimum-weight connected dominating set (MCDS) problem. The presented algorithm finds an O(logn)O(\log n) approximation in O~(D+n)\tilde{O}(D+\sqrt{n}) rounds, where DD is the network diameter and nn is the number of nodes. MCDS is a classical NP-hard problem and the achieved approximation factor O(logn)O(\log n) is known to be optimal up to a constant factor, unless P=NP. Furthermore, the O~(D+n)\tilde{O}(D+\sqrt{n}) round complexity is known to be optimal modulo logarithmic factors (for any approximation), following [Das Sarma et al.---STOC'11].Comment: An extended abstract version of this result appears in the proceedings of 41st International Colloquium on Automata, Languages, and Programming (ICALP 2014

    Magnetic resonance studies of the fundamental spin-wave modes in individual submicron Cu/NiFe/Cu perpendicularly magnetized disks

    Get PDF
    Spin wave spectra of perpendicularly magnetized disks with trilayers consisting of a 100 nm permalloy (Py) layer sandwiched by two Cu layers of 30 nm, are measured individually with a Magnetic Resonance Force Microscope (MRFM). It is demonstrated by 3D micromagnetic simulations that in disks having sub-micron size diameters, the lowest energy spin wave mode of the saturated state is not spatially uniform but rather is localized at the center of the Py/Cu interface in the region of a minimum demagnetizing field

    Interplanetary propulsion using inertial fusion

    Get PDF
    Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short-duration manned-mission performance exceeding other technologies. We are conducting a study to assess the systems aspects of inertial fusion as applied to such missions, based on the conceptual engine design of Hyde (1983) we describe the required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel. We give preliminary design details for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days. Specific mission performance results will be published elsewhere, after the study has been completed

    CLAS+FROST: new generation of photoproduction experiments at Jefferson Lab

    Full text link
    A large part of the experimental program in Hall B of the Jefferson Lab is dedicated to baryon spectroscopy. Photoproduction experiments are essential part of this program. CEBAF Large Acceptance Spectrometer (CLAS) and availability of circularly and linearly polarized tagged photon beams provide unique conditions for this type of experiments. Recent addition of the Frozen Spin Target (FROST) gives a remarkable opportunity to measure double and triple polarization observables for different pseudo-scalar meson photoproduction processes. For the first time, a complete or nearly complete experiment becomes possible and will allow model independent extraction of the reaction amplitude. An overview of the experiment and its current status is presented.Comment: 6 pages, 7 figures. Invited paper NSTAR 2009 conferenc

    Self Phase Modulation and Stimulated Raman Scattering due to High Power Femtosecond Pulse Propagation in Silicon-on-Insulator Waveguides.

    Get PDF
    Self Phase Modulation (SPM) and Stimulated Raman Scattering (SRS) in silicon waveguides have been observed and will be discussed theoretically using a modified Nonlinear Schrödinger Equation. The high optical peak powers needed for the experiments were obtained by coupling sub-picosecond (200fs) transform limited pulses with a spectral width of 12nm into a single mode silicon waveguide. Spectral broadening up to 50nm has been observed due to Self Phase Modulation. An intensity increase of the idler spectrum around 1650nm at the expense of the 1550nm pump signal has been observed as function of pump power, indicating the presence of Stimulated Raman Scattering

    On effective superpotentials and Kutasov duality

    Full text link
    We derive the effective superpotential for an N=1 SU(N_c) gauge theory with one massless adjoint field and N_f massless fundamental flavors and cubic tree-level superpotential for the adjoint field. This is a generalization of the Affleck-Dine-Seiberg superpotential to gauge theories with one massless adjoint matter field. Using Kutasov's generalization of Seiberg duality, we then find the effective superpotential for a related theory with massive fundamental flavors.Comment: 21 pages, Late
    corecore