15,507 research outputs found

    Mobile Bay turbidity study

    Get PDF
    The termination of studies carried on for almost three years in the Mobile Bay area and adjacent continental shelf are reported. The initial results concentrating on the shelf and lower bay were presented in the interim report. The continued scope of work was designed to attempt a refinement of the mathematical model, assess the effectiveness of optical measurement of suspended particulate material and disseminate the acquired information. The optical characteristics of particulate solutions are affected by density gradients within the medium, density of the suspended particles, particle size, particle shape, particle quality, albedo, and the angle of refracted light. Several of these are discussed in detail

    Solution of nonlinear algebraic equations characteristic of filter circuits Summary technical report

    Get PDF
    Digital computer program developed for solving nonlinear algebraic equations characteristic of filter circuit

    Ultrathin oxides: bulk-oxide-like model surfaces or unique films?

    Full text link
    To better understand the electronic and chemical properties of wide-gap oxide surfaces at the atomic scale, experimental work has focused on epitaxial films on metal substrates. Recent findings show that these films are considerably thinner than previously thought. This raises doubts about the transferability of the results to surface properties of thicker films and bulk crystals. By means of density-functional theory and approximate GW corrections for the electronic spectra we demonstrate for three characteristic wide-gap oxides (silica, alumina, and hafnia) the influence of the substrate and highlight critical differences between the ultrathin films and surfaces of bulk materials. Our results imply that monolayer-thin oxide films have rather unique properties.Comment: 5 pages, 3 figures, accepted by PR

    A general low frequency acoustic radiation capability for NASTRAN

    Get PDF
    A new capability called NASHUA is described for calculating the radiated acoustic sound pressure field exterior to a harmonically-excited arbitrary submerged 3-D elastic structure. The surface fluid pressures and velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior fluid. After the fluid impedance is calculated, most of the required matrix operations are performed using the general matrix manipulation package (DMAP) available in NASTRAN. Far field radiated pressures are then calculated from the surface solution using the Helmholtz exterior integral equation. Other output quantities include the maximum sound pressure levels in each of the three coordinate planes, the rms and average surface pressures and normal velocities, the total radiated power and the radiation efficiency. The overall approach is illustrated and validated using known analytic solutions for submerged spherical shells subjected to both uniform and nonuniform applied loads

    Seeking Sustainability: COSA preliminary analysis of sustainability initiatives in the coffee sector

    Get PDF
    The growing economic value and consumer popularity of sustainability standards inevitably raise questions about the extent to which their structure and dynamics actually address many environmental, economic and public welfare issues. The Committee on Sustainable Assessment (COSA) was formed, in part, to develop a scientifically credible framework capable of assessing the impacts associated with the adoption of sustainability initiatives. This paper examines the pilot phase of vetting and testing the COSA method, an innovative management tool used to gather and analyze data using economic, environmental and social metrics.sustainability initiatives, standards, organic, fair trade, Rainforest, social, environmental, economic certification

    Deriving High-Precision Radial Velocities

    Full text link
    This chapter describes briefly the key aspects behind the derivation of precise radial velocities. I start by defining radial velocity precision in the context of astrophysics in general and exoplanet searches in particular. Next I discuss the different basic elements that constitute a spectrograph, and how these elements and overall technical choices impact on the derived radial velocity precision. Then I go on to discuss the different wavelength calibration and radial velocity calculation techniques, and how these are intimately related to the spectrograph's properties. I conclude by presenting some interesting examples of planets detected through radial velocity, and some of the new-generation instruments that will push the precision limit further.Comment: Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201
    • …
    corecore