26 research outputs found

    Antitumor effect of IP-10 by using two different approaches: Live delivery system and gene therapy

    Get PDF
    Purpose: Immunotherapy is one of the treatment strategies for breast cancer, the most common cancer in women worldwide. In this approach, the patient�s immune system is stimulated to attack microscopic tumors and control metastasis. Here, we used interferon γ-induced protein 10 (IP-10), which induces and strengthens antitumor immunity, as an immunotherapeutic agent. We employed Leishmania tarentolae, a nonpathogenic lizard parasite that lacks the ability to persist in mammalian macrophages, was used as a live delivery system for carrying the immunotherapeutic agent. It has been already shown that arginase activity, and consequently, polyamine production, are associated with tumor progression. Methods: A live delivery system was constructed by stable transfection of pLEXSY plasmid containing the IP-10-enhanced green fluorescent protein (IP-10- egfp) fusion gene into L. tarentolae. Then, the presence of the IP-10-egfp gene and the accurate integration location into the parasite genome were confirmed. The therapeutic efficacy of IP- 10 delivered via L. tarentolae and recombinant pcDNA-(IP- 10-egfp) plasmid was compared by determining the arginase activity in a mouse 4T1 breast cancer model. Results: The pcDNA- (IP-10-egfp) group showed a significant reduction in tumor weight and growth. Histological evaluation also revealed that only this group demonstrated inhibition of metastasis to the lung tissue. The arginase activity in the tissue of the pcDNA-(IP- 10-egfp) mice significantly decreased in comparison with that in normal mice. No significant difference was observed in arginase activity in the sera of mice receiving other therapeutic strategies. Conclusion: Our data indicates that IP-10 immunotherapy is a promising strategy for breast cancer treatment, as shown in the 4T1-implanted BALB/c mouse model. However, the L. tarentolae- (IP-10-EGFP) live delivery system requires dose modifications to achieve efficacy in the applied regimen (six injections in 3 weeks). Our results indicate that the arginase assay could be a good biomarker to differentiate tumoral tissues from the normal ones. © 2016 Korean Breast Cancer Society. All rights reserved

    A single-center non-blinded randomized clinical trial to assess the safety and effectiveness of PhR160 spray in the treatment of COVID-19 pneumonia

    Get PDF
    7-16COVID-19 is an emerging pandemic that caused a very widespread infection with more than 1000000 cases in Iran within a year. The main cause of mortality among patients with COVID-19 is pulmonary failure. In Iranian Traditional Medicine, essences have been used for curing pulmonary diseases. Pinen-Hydronoplacton-Ribonucleic acid (PHR) is an inhaler spray made of seven different plants, which all are used by humans and have desirable pharmacological features for treating pulmonary symptoms of COVID-19 patients. This study was conducted to assess the safety and effectiveness of PHR160 spray in improving pulmonary symptoms of COVID-19 patients. This was a single-centre, non-blinded randomized clinical trial with two parallel groups in two different wards of Baqiyatallah hospital, Tehran, Iran. Participants were 63 male patients diagnosed with COVID-19 pneumonia, divided into 2 groups of 32 in the intervention group and 31 in the control group. The intervention group received 5 days of PHR160 spray, 10 puffs each day, 300 micrograms in each puff in addition to the routine treatment. Oxygen saturation was measured by a pulse oximeter, every six hours and recorded daily. This study showed that administration of PhR 160 in patients of COVID-19 was safe, and it significantly increased the arterial oxygen saturation percentage in COVID-19 patients. In addition, it decreased hospitalization duration, dyspnea score, and cough score significantly in the patients. The statistical modelling test, with adjusting the age and respiratory rate for baseline and 4 days of the intervention, shows that the oxygen saturation percentage mean was significantly more in the intervention group by 5.14 units (p<0.001)

    C-Terminal Domain Deletion Enhances the Protective Activity of cpa/cpb Loaded Solid Lipid Nanoparticles against Leishmania major in BALB/c Mice

    Get PDF
    Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis with an annual incidence of approximately 2 million cases and is endemic in 88 countries, including Iran. CL's continued spread, along with rather ineffectual treatments and drug-resistant variants emergence has increased the need for advanced preventive strategies. We studied Type II cysteine proteinase (CPA) and Type I (CPB) with its C-terminal extension (CTE) as cocktail DNA vaccine against murine and canine leishmaniasis. However, adjuvants' success in enhancing immune responses to selected antigens led us to refocus our vaccine development programs. Herein, we discuss cationic solid lipid nanoparticles' (cSLN) ability to improve vaccine-induced protective efficacy against CL and subsequent lesion size and parasite load reduction in BALB/c mice. For this work, we evaluated five different conventional as well as novel parasite detection techniques, i.e., footpad imaging, footpad flowcytometry and lymph node flowcytometry for disease progression assessments. Vaccination with cSLN-cpa/cpb-CTE formulation showed highest parasite inhibition at 3-month post vaccination. Immunized mice showed reduced IL-5 level and significant IFN-ã increase, compared to control groups. We think our study represents a potential future and a major step forward in vaccine development against leishmaniasis

    Possibilities and challenges for developing a successful vaccine for leishmaniasis

    Full text link

    Curcuma purpurascens BI. rhizome accelerates rat excisional wound healing: involvement of Hsp70/Bax proteins, antioxidant defense, and angiogenesis activity

    No full text
    Elham Rouhollahi,1 Soheil Zorofchian Moghadamtousi,2 Fatemeh Hajiaghaalipour,3 Maryam Zahedifard,2 Faezeh Tayeby,2 Khalijah Awang,4 Mahmood Ameen Abdulla,3 Zahurin Mohamed1 1Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, 2Institute of Biological Sciences, Faculty of Science, 3Department of Biomedical Science, Faculty of Medicine, 4Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia Purpose: Curcuma purpurascens BI. is a member of Zingiberaceae family. The purpose of this study is to investigate the wound healing properties of hexane extract of C. purpurascens rhizome (HECP) against excisional wound healing in rats.Materials and methods: Twenty four rats were randomly divided into 4 groups: A) negative control (blank placebo, acacia gum), B) low dose of HECP, C) high dose of HECP, and D) positive control, with 6 rats in each group. Full-thickness incisions (approximately 2.00 cm) were made on the neck area of each rat. Groups 1&ndash;4 were treated two-times a day for 20 days with blank placebo, HECP (100 mg/kg), HECP (200 mg/kg), and intrasite gel as a positive control, respectively. After 20 days, hematoxylin and eosin and Masson&rsquo;s trichrome stainings were employed to investigate the histopathological alterations. Protein expressions of Bax and Hsp70 were examined in the wound tissues using immunohistochemistry analysis. In addition, levels of enzymatic antioxidants and malondialdehyde representing lipid peroxidation were measured in wound tissue homogenates.Results: Macroscopic evaluation of wounds showed conspicuous elevation in wound contraction after topical administration of HECP at both doses. Moreover, histopathological analysis revealed noteworthy reduction in the scar width correlated with the enhanced collagen content and fibroblast cells, accompanied by a reduction of inflammatory cells in the granulation tissues. At the molecular level, HECP facilitates wound-healing process by downregulating Bax and upregulating Hsp70 protein at the wound site. The formation of new blood vessel was observed in Masson&rsquo;s trichrome staining of wounds treated with HECP (100 and 200 mg/kg). In addition, HECP administration caused a significant surge in enzymatic antioxidant activities and a decline in lipid peroxidation.Conclusion: These findings suggested that HECP accelerated wound-healing process in rats via antioxidant activity, angiogenesis effect and anti-inflammatory responses involving Hsp70/Bax. Keywords: Zingiberaceae, wound closure, immunohistochemistry, antioxidant enzyme activity, inflammatory cell

    Leishmania tarentolae secreting the sand fly salivary antigen PpSP15 confers protection against Leishmania major infection in a susceptible BALB/c mice model

    No full text
    a b s t r a c t Cutaneous leishmaniasis is a zoonotic, vector-borne disease causing a major health problem in several countries. No vaccine is available and there are limitations associated with the current therapeutic regimens. Immune responses to sand fly saliva have been shown to protect against Leishmania infection. A cellular immune response to PpSP15, a protein from the sand fly Phlebotomus papatasi, was sufficient to control Leishmania major infection in mice. This work presents data supporting the vaccine potency of recombinant live non-pathogenic Leishmania (L.) tarentolae secreting PpSP15 in mice and its potential as a new vaccine strategy against L. major. We generated a recombinant L. tarentolae-PpSP15 strain delivered in the presence of CpG ODN and evaluated its immunogenicity and protective immunity against L. major infection in BALB/c mice. In parallel, different vaccination modalities using PpSP15 as the target antigen were compared. Humoral and cellular immune responses were evaluated before and at three and eight weeks after challenge. Footpad swelling and parasite load were assessed at eight and eleven weeks post-challenge. Our results show that vaccination with L. tarentolae-PpSP15 in combination with CpG as a prime-boost modality confers strong protection against L. major infection that was superior to other vaccination modalities used in this study. This approach represents a novel and promising vaccination strategy against Old World cutaneous leishmaniasis

    Cryo-EM structures of Trypanosoma brucei gambiense ISG65 with human complement C3 and C3b and their roles in alternative pathway restriction.

    No full text
    African Trypanosomes have developed elaborate mechanisms to escape the adaptive immune response, but little is known about complement evasion particularly at the early stage of infection. Here we show that ISG65 of the human-infective parasite Trypanosoma brucei gambiense is a receptor for human complement factor C3 and its activation fragments and that it takes over a role in selective inhibition of the alternative pathway C5 convertase and thus abrogation of the terminal pathway. No deposition of C4b, as part of the classical and lectin pathway convertases, was detected on trypanosomes. We present the cryo-electron microscopy (EM) structures of native C3 and C3b in complex with ISG65 which reveal a set of modes of complement interaction. Based on these findings, we propose a model for receptor-ligand interactions as they occur at the plasma membrane of blood-stage trypanosomes and may facilitate innate immune escape of the parasite

    Chemopreventive evaluation of a Schiff base derived copper (II) complex against Azoxymethane-induced colorectal cancer in rats

    Get PDF
    Background: Based on the potential of Schiff base compounds to act as sources for the development of cancer chemotherapeutic agents, this in vivo study was performed to investigate the inhibitory properties of the synthetic Schiff base compound Cu(BrHAP)2 on colonic aberrant crypt foci (ACF). Methodology: This study involved five groups of male rats. The negative control group was injected with normal saline once a week for 2 weeks and fed 10% Tween 20 for 10 weeks, the cancer control group was subcutaneously injected with 15 mg/kg azoxymethane once per week for two consecutive weeks, the positive control group was injected with 15 mg/kg azoxymethane once per week for two consecutive weeks and 35 mg/kg 5-fluorouracil (injected intra-peritoneally) for 4 weeks, and the experimental groups were first injected with 15 mg/kg azoxymethane once per week for two consecutive weeks and then fed 2.5 or 5 mg/kg of the Schiff base compound once a day for 10 weeks. Application of the Schiff base compound suppressed total colonic ACF formation by up to 72% to 74% (P,0.05) when compared with the cancer control group. Analysis of colorectal specimens revealed that treatments with the Schiff base compound decreased the mean crypt scores in azoxymethane-treated rats. Significant elevations of superoxide dismutase, glutathione peroxidase and catalase activities and a reduction in the level of malondialdehyde were also observed. Histologically, all treatment groups exhibited significant decreases in dysplasia compared to the cancer control group (P,0.05). Immunohistochemical staining demonstrated down-regulation of the PCNA protein. Comparative western blot analysis revealed that COX-2 and Bcl2 were up-regulated and Bax was down-regulated compared with the AOM control group. Conclusion: The current study demonstrated that the Cu(BrHAP)2 compound has promising chemoprotective activities that are evidenced by significant decreases in the numbers of ACFs in azoxymethane-induced colon cancer
    corecore