3,498 research outputs found
Sedimentological studies of the "Ilha de Marchantaria" in the Solimões/Amazon River near Manaus
Sedimentological studies on the Ilha de Marchantaria an island in the Amazon river near Manaus reveal the existence of four different structural main units. A: Sandy channel bars consisting of giant ripples constitute deposits for the formation of islands or newly formed areas of the Varzea. B: Gradual accumulation on the channel bars leads to the formation of point bar ridges which consist chiefly of small-scale ripples. C: Between point bar ridges of different ages there exist swales. During rising water level the river water flows from the downward side into the swales where finegrained sediments are deposited. D: Permanent lakes are formed mainly in the centre of the islands. During low water periods the lakes may be cut of from the river. During high water periods when the whole island is flooded by the river, additional sedimentation takes place especially in the upstream area of the island. There is however, extensive erosion of the banks on the upstream side of the island. By erosion of the upstream end and sedimentation processes on the downstream end the island moves slowly downstream
Mellum Island (southern North Sea): dynamic processes and sedimentary structures. I. Southern tidal flat, transition zone and high-surface.[p.72 (Blasensand) only][Translation from: Senckenbergiana Maritima 11, 59-113, 1979]
This partial translation of a longer article describes the phenomenon of ”Blasensand”. Blasensand is formed when sedimentation of dried out sand is suddenly flooded from above. A more detailed explanation of Blasensand is given in this translated part of the paper
Investigating the origin of time with trapped ions
Even though quantum systems in energy eigenstates do not evolve in time, they
can exhibit correlations between internal degrees of freedom in such a way that
one of the internal degrees of freedom behaves like a clock variable, and
thereby defines an internal time, that parametrises the evolution of the other
degrees of freedom. This situation is of great interest in quantum cosmology
where the invariance under reparametrisation of time implies that the temporal
coordinate dissapears and is replaced by the Wheeler-DeWitt constraint. Here we
show that this paradox can be investigated experimentally using the exquisite
control now available on moderate size quantum systems. We describe in detail
how to implement such an experimental demonstration using the spin and motional
degrees of freedom of a single trapped ion.Comment: 5 page
Spin and Orbital Splitting in Ferromagnetic Contacted Single Wall Carbon Nanotube Devices
We observed the coulomb blockade phenomena in ferromagnetic contacting single
wall semiconducting carbon nanotube devices. No obvious Coulomb peaks shift was
observed with existing only the Zeeman splitting at 4K. Combining with other
effects, the ferromagnetic leads prevent the orbital spin states splitting with
magnetic field up to 2 Tesla at 4K. With increasing magnetic field further,
both positive or negative coulomb peaks shift slopes are observed associating
with clockwise and anticlockwise orbital state splitting. The strongly
suppressed/enhanced of the conductance has been observed associating with the
magnetic field induced orbital states splitting/converging
New Insights into Cosmic Ray induced Biosignature Chemistry in Earth-like Atmospheres
With the recent discoveries of terrestrial planets around active M-dwarfs,
destruction processes masking the possible presence of life are receiving
increased attention in the exoplanet community. We investigate potential
biosignatures of planets having Earth-like (N-O) atmospheres orbiting
in the habitable zone of the M-dwarf star AD Leo. These are bombarded by high
energetic particles which can create showers of secondary particles at the
surface. We apply our cloud-free 1D climate-chemistry model to study the
influence of key particle shower parameters and chemical efficiencies of NOx
and HOx production from cosmic rays. We determine the effect of stellar
radiation and cosmic rays upon atmospheric composition, temperature, and
spectral appearance. Despite strong stratospheric O destruction by cosmic
rays, smog O can significantly build up in the lower atmosphere of our
modeled planet around AD Leo related to low stellar UVB. NO abundances
decrease with increasing flaring energies but a sink reaction for NO with
excited oxygen becomes weaker, stabilizing its abundance. CH is removed
mainly by Cl in the upper atmosphere for strong flaring cases and not via
hydroxyl as is otherwise usually the case. Cosmic rays weaken the role of
CH in heating the middle atmosphere so that HO absorption becomes more
important. We additionally underline the importance of HNO as a possible
marker for strong stellar particle showers. In a nutshell, uncertainty in NOx
and HOx production from cosmic rays significantly influences biosignature
abundances and spectral appearance.Comment: Manuscript version after addressing all referee comments. Published
in Ap
Consistently Simulating a Wide Range of Atmospheric Scenarios for K2-18b with a Flexible Radiative Transfer Module
The atmospheres of small, potentially rocky exoplanets are expected to cover
a diverse range in composition and mass. Studying such objects therefore
requires flexible and wide-ranging modeling capabilities. We present in this
work the essential development steps that lead to our flexible radiative
transfer module, REDFOX, and validate REDFOX for the Solar system planets
Earth, Venus and Mars, as well as for steam atmospheres. REDFOX is a
k-distribution model using the correlated-k approach with random overlap method
for the calculation of opacities used in the -two-stream approximation
for radiative transfer. Opacity contributions from Rayleigh scattering, UV /
visible cross sections and continua can be added selectively. With the improved
capabilities of our new model, we calculate various atmospheric scenarios for
K2-18b, a super-Earth / sub-Neptune with 8 M orbiting in the
temperate zone around an M-star, with recently observed HO spectral
features in the infrared. We model Earth-like, Venus-like, as well as H-He
primary atmospheres of different Solar metallicity and show resulting climates
and spectral characteristics, compared to observed data. Our results suggest
that K2-18b has an H-He atmosphere with limited amounts of HO and
CH. Results do not support the possibility of K2-18b having a water
reservoir directly exposed to the atmosphere, which would reduce atmospheric
scale heights, hence too the amplitudes of spectral features inconsistent with
the observations. We also performed tests for H-He atmospheres up to 50
times Solar metallicity, all compatible with the observations.Comment: 28 pages, 13 figures, accepted for publication in Ap
Simultaneous cooling of axial vibrational modes in a linear ion trap
In order to use a collection of trapped ions for experiments where a well-defined preparation of vibrational states is necessary, all vibrational modes have to be cooled to ensure precise and repeatable manipulation of the ions quantum states. A method for simultaneous sideband cooling of all axial vibrational modes is proposed. By application of a magnetic field gradient the absorption spectrum of each ion is modified such that sideband resonances of different vibrational modes coincide. The ion string is then irradiated with monochromatic electromagnetic radiation, in the optical or microwave regime, for sideband excitation. This cooling scheme is investigated in detailed numerical studies. Its application for initializing ion strings for quantum information processing is extensively discussed
- …
