3,503 research outputs found

    Robustness of edge states in graphene quantum dots

    Get PDF
    We analyze the single particle states at the edges of disordered graphene quantum dots. We show that generic graphene quantum dots support a number of edge states proportional to circumference of the dot over the lattice constant. Our analytical theory agrees well with numerical simulations. Perturbations breaking electron-hole symmetry like next-nearest neighbor hopping or edge impurities shift the edge states away from zero energy but do not change their total amount. We discuss the possibility of detecting the edge states in an antidot array and provide an upper bound on the magnetic moment of a graphene dot.Comment: Added figure 6, extended discussion (version as accepted by Physical Review B

    Disparity among low first ionization potential elements

    Full text link
    The elemental composition of the solar wind differs from the solar photospheric composition. Elements with low first ionization potential (FIP) appear enhanced compared to O in the solar wind relative to the respective photospheric abundances. This so-called FIP effect is different in the slow solar wind and the coronal hole wind. However, under the same plasma conditions, for elements with similar FIPs such as Mg, Si, and Fe, comparable enhancements are expected. We scrutinize the assumption that the FIP effect is always similar for different low FIP elements, namely Mg, Si, and Fe. We investigate the dependency of the FIP effect of low FIP elements on the O7+/O6+ charge state ratio depending on time and solar wind type. We order the observed FIP ratios with respect to the O7+/O6+ charge state ratio into bins and analyze separately the respective distributions of the FIP ratio of Mg, Si, and Fe for each O7+/O6+ charge state ratio bin. We observe that the FIP effect shows the same qualitative yearly behavior for Mg and Si, while Fe shows significant differences during the solar activity maximum and its declining phase. In each year, the FIP effect for Mg and Si always increases with increasing O7+/O6+ charge state ratio, but for high O7+/O6+ charge state ratios the FIP effect for Fe shows a qualitatively different behavior. During the years 2001-2006, instead of increasing with the O7+/O6+ charge state ratio, the Fe FIP ratio exhibits a broad peak. Also, the FIP distribution per O7+/O6+ charge state bin is significantly broader for Fe than for Mg and Si. These observations support the conclusion that the elemental fractionation is only partly determined by FIP. In particular, the qualitative difference behavior with increasing O7+/O6+ charge state ratio between Fe on the one hand and Mg and Si on the other hand is not yet well explained by models of fractionation

    An elliptic expansion of the potential field source surface model

    Full text link
    Context. The potential field source surface model is frequently used as a basis for further scientific investigations where a comprehensive coronal magnetic field is of importance. Its parameters, especially the position and shape of the source surface, are crucial for the interpretation of the state of the interplanetary medium. Improvements have been suggested that introduce one or more additional free parameters to the model, for example, the current sheet source surface (CSSS) model. Aims. Relaxing the spherical constraint of the source surface and allowing it to be elliptical gives modelers the option of deforming it to more accurately match the physical environment of the specific period or location to be analyzed. Methods. A numerical solver is presented that solves Laplace's equation on a three-dimensional grid using finite differences. The solver is capable of working on structured spherical grids that can be deformed to create elliptical source surfaces. Results. The configurations of the coronal magnetic field are presented using this new solver. Three-dimensional renderings are complemented by Carrington-like synoptic maps of the magnetic configuration at different heights in the solar corona. Differences in the magnetic configuration computed by the spherical and elliptical models are illustrated.Comment: 11 pages, 7 figure

    Evolution of an equatorial coronal hole structure and the released coronal hole wind stream: Carrington rotations 2039 to 2050

    Full text link
    The Sun is a highly dynamic environment that exhibits dynamic behavior on many different timescales. In particular, coronal holes exhibit temporal and spatial variability. Signatures of these coronal dynamics are inherited by the coronal hole wind streams that originate in these regions and can effect the Earth's magnetosphere. Both the cause of the observed variabilities and how these translate to fluctuations in the in situ observed solar wind is not yet fully understood. During solar activity minimum the structure of the magnetic field typically remains stable over several Carrington rotations (CRs). But how stable is the solar magnetic field? Here, we address this question by analyzing the evolution of a coronal hole structure and the corresponding coronal hole wind stream emitted from this source region over 12 consecutive CRs in 2006. To this end, we link in situ observations of Solar Wind Ion Composition Spectrometer (SWICS) onboard the Advanced Composition Explorer (ACE) with synoptic maps of Michelson Doppler imager (MDI) on the Solar and Heliospheric Observatory (SOHO) at the photospheric level through a combination of ballistic back-mapping and a potential field source surface (PFSS) approach. Together, these track the evolution of the open field line region that is identified as the source region of a recurring coronal hole wind stream. We find that the shape of the open field line region and to some extent also the solar wind properties are influenced by surrounding more dynamic closed loop regions. We show that the freeze-in order can change within a coronal hole wind stream on small timescales and illustrate a mechanism that can cause changes in the freeze-in order. The inferred minimal temperature profile is variable even within coronal hole wind and is in particular most variable in the outer corona

    Quantized conductance at the Majorana phase transition in a disordered superconducting wire

    Get PDF
    Superconducting wires without time-reversal and spin-rotation symmetries can be driven into a topological phase that supports Majorana bound states. Direct detection of these zero-energy states is complicated by the proliferation of low-lying excitations in a disordered multi-mode wire. We show that the phase transition itself is signaled by a quantized thermal conductance and electrical shot noise power, irrespective of the degree of disorder. In a ring geometry, the phase transition is signaled by a period doubling of the magnetoconductance oscillations. These signatures directly follow from the identification of the sign of the determinant of the reflection matrix as a topological quantum number.Comment: 7 pages, 4 figures; v3: added appendix with numerics for long-range disorde

    Graphene Rings in Magnetic Fields: Aharonov-Bohm Effect and Valley Splitting

    Get PDF
    We study the conductance of mesoscopic graphene rings in the presence of a perpendicular magnetic field by means of numerical calculations based on a tight-binding model. First, we consider the magnetoconductance of such rings and observe the Aharonov-Bohm effect. We investigate different regimes of the magnetic flux up to the quantum Hall regime, where the Aharonov-Bohm oscillations are suppressed. Results for both clean (ballistic) and disordered (diffusive) rings are presented. Second, we study rings with smooth mass boundary that are weakly coupled to leads. We show that the valley degeneracy of the eigenstates in closed graphene rings can be lifted by a small magnetic flux, and that this lifting can be observed in the transport properties of the system.Comment: 12 pages, 9 figure

    Visual Experience Shapes Orthographic Representations in the Visual Word Form Area

    Get PDF
    Current neurocognitive research suggests that the efficiency of visual word recognition rests on abstract memory representations of written letters and words stored in the visual word form area (VWFA) in the left ventral occipitotemporal cortex. These representations are assumed to be invariant to visual characteristics such as font and case. In the present functional MRI study, we tested this assumption by presenting written words and varying the case format of the initial letter of German nouns (which are always capitalized) as well as German adjectives and adverbs (both usually in lowercase). As evident from a Word Type × Case Format interaction, activation in the VWFA was greater to words presented in unfamiliar case formats relative to familiar case formats. Our results suggest that neural representations of written words in the VWFA are not fully abstract and still contain information about the visual format in which words are most frequently perceived

    Energy balance closure for the LITFASS-2003 experiment

    Get PDF
    In the first part, this paper synthesises the main results from a series of previous studies on the closure of the local energy balance at low-vegetation sites during the LITFASS-2003 experiment. A residual of up to 25% of the available energy has been found which cannot be fully explained either by the measurement uncertainty of the single components of the surface energy balance or by the length of the flux-averaging period. In the second part, secondary circulations due to heterogeneities in the surface characteristics (roughness, thermal and moisture properties) are discussed as a possible cause for the observed energy balance non-closure. This hypothesis seems to be supported from the fluxes derived from area-averaging measurement techniques (scintillometers, aircraft)

    A generalized approach to model the spectra and radiation dose rate of solar particle events on the surface of Mars

    Get PDF
    For future human missions to Mars, it is important to study the surface radiation environment during extreme and elevated conditions. In the long term, it is mainly Galactic Cosmic Rays (GCRs) modulated by solar activity that contributes to the radiation on the surface of Mars, but intense solar energetic particle (SEP) events may induce acute health effects. Such events may enhance the radiation level significantly and should be detected as immediately as possible to prevent severe damage to humans and equipment. However, the energetic particle environment on the Martian surface is significantly different from that in deep space due to the influence of the Martian atmosphere. Depending on the intensity and shape of the original solar particle spectra as well as particle types, the surface spectra may induce entirely different radiation effects. In order to give immediate and accurate alerts while avoiding unnecessary ones, it is important to model and well understand the atmospheric effect on the incoming SEPs including both protons and helium ions. In this paper, we have developed a generalized approach to quickly model the surface response of any given incoming proton/helium ion spectra and have applied it to a set of historical large solar events thus providing insights into the possible variety of surface radiation environments that may be induced during SEP events. Based on the statistical study of more than 30 significant solar events, we have obtained an empirical model for estimating the surface dose rate directly from the intensities of a power-law SEP spectra
    • …
    corecore