1,287 research outputs found

    Arctic octahedron in three-dimensional rhombus tilings and related integer solid partitions

    Full text link
    Three-dimensional integer partitions provide a convenient representation of codimension-one three-dimensional random rhombus tilings. Calculating the entropy for such a model is a notoriously difficult problem. We apply transition matrix Monte Carlo simulations to evaluate their entropy with high precision. We consider both free- and fixed-boundary tilings. Our results suggest that the ratio of free- and fixed-boundary entropies is σfree/σfixed=3/2\sigma_{free}/\sigma_{fixed}=3/2, and can be interpreted as the ratio of the volumes of two simple, nested, polyhedra. This finding supports a conjecture by Linde, Moore and Nordahl concerning the ``arctic octahedron phenomenon'' in three-dimensional random tilings

    Two-dimensional random tilings of large codimension: new progress

    Full text link
    Two-dimensional random tilings of rhombi can be seen as projections of two-dimensional membranes embedded in hypercubic lattices of higher dimensional spaces. Here, we consider tilings projected from a DD-dimensional space. We study the limiting case, when the quantity DD, and therefore the number of different species of tiles, become large. We had previously demonstrated [ICQ6] that, in this limit, the thermodynamic properties of the tiling become independent of the boundary conditions. The exact value of the limiting entropy and finite DD corrections remain open questions. Here, we develop a mean-field theory, which uses an iterative description of the tilings based on an analogy with avoiding oriented walks on a random tiling. We compare the quantities so-obtained with numerical calculations. We also discuss the role of spatial correlations.Comment: Proceedings of the 7th International Conference on Quasicrystals (ICQ7, Stuttgart), 4 pages, 4 figure

    Lower order terms in Szego type limit theorems on Zoll manifolds

    Full text link
    This is a detailed version of the paper math.FA/0212273. The main motivation for this work was to find an explicit formula for a "Szego-regularized" determinant of a zeroth order pseudodifferential operator (PsDO) on a Zoll manifold. The idea of the Szego-regularization was suggested by V. Guillemin and K. Okikiolu. They have computed the second term in a Szego type expansion on a Zoll manifold of an arbitrary dimension. In the present work we compute the third asymptotic term in any dimension. In the case of dimension 2, our formula gives the above mentioned expression for the Szego-redularized determinant of a zeroth order PsDO. The proof uses a new combinatorial identity, which generalizes a formula due to G.A.Hunt and F.J.Dyson. This identity is related to the distribution of the maximum of a random walk with i.i.d. steps on the real line. The proof of this combinatorial identity together with historical remarks and a discussion of probabilistic and algebraic connections has been published separately.Comment: 39 pages, full version, submitte

    Trace functions as Laplace transforms

    Full text link
    We study trace functions on the form t\to\tr f(A+tB) where f f is a real function defined on the positive half-line, and A A and B B are matrices such that A A is positive definite and B B is positive semi-definite. If f f is non-negative and operator monotone decreasing, then such a trace function can be written as the Laplace transform of a positive measure. The question is related to the Bessis-Moussa-Villani conjecture. Key words: Trace functions, BMV-conjecture.Comment: Minor change of style, update of referenc

    Signature of nearly icosahedral structures in liquid and supercooled liquid Copper

    Full text link
    A growing body of experiments display indirect evidence of icosahedral structures in supercooled liquid metals. Computer simulations provide more direct evidence but generally rely on approximate interatomic potentials of unproven accuracy. We use first-principles molecular dynamics simulations to generate realistic atomic configurations, providing structural detail not directly available from experiment, based on interatomic forces that are more reliable than conventional simulations. We analyze liquid copper, for which recent experimental results are available for comparison, to quantify the degree of local icosahedral and polytetrahedral order

    DNA: From rigid base-pairs to semiflexible polymers

    Full text link
    The sequence-dependent elasticity of double-helical DNA on a nm length scale can be captured by the rigid base-pair model, whose strains are the relative position and orientation of adjacent base-pairs. Corresponding elastic potentials have been obtained from all-atom MD simulation and from high-resolution structural data. On the scale of a hundred nm, DNA is successfully described by a continuous worm-like chain model with homogeneous elastic properties characterized by a set of four elastic constants, which have been directly measured in single-molecule experiments. We present here a theory that links these experiments on different scales, by systematically coarse-graining the rigid base-pair model for random sequence DNA to an effective worm-like chain description. The average helical geometry of the molecule is exactly taken into account in our approach. We find that the available microscopic parameters sets predict qualitatively similar mesoscopic parameters. The thermal bending and twisting persistence lengths computed from MD data are 42 and 48 nm, respectively. The static persistence lengths are generally much higher, in agreement with cyclization experiments. All microscopic parameter sets predict negative twist-stretch coupling. The variability and anisotropy of bending stiffness in short random chains lead to non-Gaussian bend angle distributions, but become unimportant after two helical turns.Comment: 13 pages, 6 figures, 6 table

    Polymer reptation and nucleosome repositioning

    Full text link
    We consider how beads can diffuse along a chain that wraps them, without becoming displaced from the chain; our proposed mechanism is analogous to the reptation of "stored length" in more familiar situations of polymer dynamics. The problem arises in the case of globular aggregates of proteins (histones) that are wound by DNA in the chromosomes of plants and animals; these beads (nucleosomes) are multiply wrapped and yet are able to reposition themselves over long distances, while remaining bound by the DNA chain.Comment: 9 pages, including 2 figures, to be published in Phys. Rev. Let
    corecore