95 research outputs found

    An intronic deletion in megakaryoblastic leukemia 1 is associated with hyperproliferation of B cells in triplets with Hodgkin lymphoma

    Get PDF
    Megakaryoblastic leukemia 1 (MKL1) is a coactivator of serum response factor and together regulate transcription of actin cytoskeleton genes. MKL1 is associated with hematologic malignancies and immunodeficiency, but its role in B cells is unexplored. Here we examined B cells from monozygotic triplets with an intronic deletion in MKL1, two of whom were previously treated for Hodgkin lymphoma. To investigate MKL1 and B cell responses in HL pathogenesis, we generated Epstein Barr virus-transformed lymphoblastoid cell lines from the triplets and two controls. While cells from the Hodgkin lymphoma treated patients had a phenotype close to healthy controls, cells from the undiagnosed triplet had increased MKL1 mRNA, increased MKL1 protein, and elevated expression of MKL1-dependent genes. This was associated with elevated actin content, increased cell spreading, decreased expression of CD11a integrin molecules, and delayed aggregation. Moreover, cells from the undiagnosed triplet proliferated faster, displayed a higher proportion of cells with hyperploidy, and formed large tumors in vivo. This phenotype was reversible by inhibiting MKL1 activity. Interestingly, cells from the triplet treated for Hodgkin lymphoma in 1985 contained two subpopulations: one with high expression of CD11a that behaved like control cells and the other with low expression of CD11a that formed large tumors in vivo similar to cells from the undiagnosed triplet. This implies that pre-malignant cells had re-emerged a long time after treatment. Together, these data suggest that dysregulated MKL1 activity participates in B cell transformation and Hodgkin lymphoma pathogenesis

    A Global Clustering Algorithm to Identify Long Intergenic Non-Coding RNA - with Applications in Mouse Macrophages

    Get PDF
    Identification of diffuse signals from the chromatin immunoprecipitation and high-throughput massively parallel sequencing (ChIP-Seq) technology poses significant computational challenges, and there are few methods currently available. We present a novel global clustering approach to enrich diffuse CHIP-Seq signals of RNA polymerase II and histone 3 lysine 4 trimethylation (H3K4Me3) and apply it to identify putative long intergenic non-coding RNAs (lincRNAs) in macrophage cells. Our global clustering method compares favorably to the local clustering method SICER that was also designed to identify diffuse CHIP-Seq signals. The validity of the algorithm is confirmed at several levels. First, 8 out of a total of 11 selected putative lincRNA regions in primary macrophages respond to lipopolysaccharides (LPS) treatment as predicted by our computational method. Second, the genes nearest to lincRNAs are enriched with biological functions related to metabolic processes under resting conditions but with developmental and immune-related functions under LPS treatment. Third, the putative lincRNAs have conserved promoters, modestly conserved exons, and expected secondary structures by prediction. Last, they are enriched with motifs of transcription factors such as PU.1 and AP.1, previously shown to be important lineage determining factors in macrophages, and 83% of them overlap with distal enhancers markers. In summary, GCLS based on RNA polymerase II and H3K4Me3 CHIP-Seq method can effectively detect putative lincRNAs that exhibit expected characteristics, as exemplified by macrophages in the study

    New Non-Intravenous Routes for Benzodiazepines in Epilepsy: A Clinician Perspective.

    Get PDF
    Benzodiazepines represent the first-line treatment for the acute management of epileptic seizures and status epilepticus. The emergency use of benzodiazepines must be timely, and because most seizures occur outside of the hospital environment, there is a significant need for delivery methods that are easy for nonclinical caregivers to use and administer quickly and safely. In addition, the ideal route of administration should be reliable in terms of absorption. Rectal diazepam is the only licensed formulation in the USA, whereas rectal diazepam and buccal midazolam are currently licensed in the EU. However, the sometimes unpredictable absorption with rectal and buccal administration means they are not ideal routes. Several alternative routes are currently being explored. This is a narrative review of data about delivery methods for benzodiazepines alternative to the intravenous and oral routes for the acute treatment of seizures. Unconventional delivery options such as direct delivery to the central nervous system or inhalers are reported. Data show that intranasal diazepam or midazolam and the intramuscular auto-injector for midazolam are as effective as rectal or intravenous diazepam. Head-to-head comparisons with buccal midazolam are urgently needed. In addition, the majority of trials focused on children and adolescents, and further trials in adults are warranted

    Administration of M. leprae Hsp65 Interferes with the Murine Lupus Progression

    Get PDF
    The heat shock protein [Hsp] family guides several steps during protein synthesis, are abundant in prokaryotic and eukaryotic cells, and are highly conserved during evolution. The Hsp60 family is involved in assembly and transport of proteins, and is expressed at very high levels during autoimmunity or autoinflammatory phenomena. Here, the pathophysiological role of the wild type [WT] and the point mutated K409A recombinant Hsp65 of M. leprae in an animal model of Systemic Lupus Erythematosus [SLE] was evaluated in vivo using the genetically homogeneous [NZBxNZW]F1 mice. Anti-DNA and anti-Hsp65 antibodies responsiveness was individually measured during the animal's life span, and the mean survival time [MST] was determined. The treatment with WT abbreviates the MST in 46%, when compared to non-treated mice [p<0.001]. An increase in the IgG2a/IgG1 anti-DNA antibodies ratio was also observed in animals injected with the WT Hsp65. Incubation of BALB/c macrophages with F1 serum from WT treated mice resulted in acute cell necrosis; treatment of these cells with serum from K409A treated mice did not cause any toxic effect. Moreover, the involvement of WT correlates with age and is dose-dependent. Our data suggest that Hsp65 may be a central molecule intervening in the progression of the SLE, and that the point mutated K409A recombinant immunogenic molecule, that counteracts the deleterious effect of WT, may act mitigating and delaying the development of SLE in treated mice. This study gives new insights into the general biological role of Hsp and the significant impact of environmental factors during the pathogenesis of this autoimmune process

    Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects

    Get PDF
    Temporal lobe epilepsy is a common, chronic neurological disorder characterized by recurrent spontaneous seizures. MicroRNAs (miRNAs) are small, noncoding RNAs that regulate post-transcriptional expression of protein-coding mRNAs, which may have key roles in the pathogenesis of neurological disorders. In experimental models of prolonged, injurious seizures (status epilepticus) and in human epilepsy, we found upregulation of miR-134, a brain-specific, activity-regulated miRNA that has been implicated in the control of dendritic spine morphology. Silencing of miR-134 expression in vivo using antagomirs reduced hippocampal CA3 pyramidal neuron dendrite spine density by 21% and rendered mice refractory to seizures and hippocampal injury caused by status epilepticus. Depletion of miR-134 after status epilepticus in mice reduced the later occurrence of spontaneous seizures by over 90% and mitigated the attendant pathological features of temporal lobe epilepsy. Thus, silencing miR-134 exerts prolonged seizure-suppressant and neuroprotective actions; determining whether these are anticonvulsant effects or are truly antiepileptogenic effects requires additional experimentation

    Apoptotic cell-based therapies against transplant rejection: role of recipient’s dendritic cells

    Get PDF
    One of the ultimate goals in transplantation is to develop novel therapeutic methods for induction of donor-specific tolerance to reduce the side effects caused by the generalized immunosuppression associated to the currently used pharmacologic regimens. Interaction or phagocytosis of cells in early apoptosis exerts potent anti-inflammatory and immunosuppressive effects on antigen (Ag)-presenting cells (APC) like dendritic cells (DC) and macrophages. This observation led to the idea that apoptotic cell-based therapies could be employed to deliver donor-Ag in combination with regulatory signals to recipient’s APC as therapeutic approach to restrain the anti-donor response. This review describes the multiple mechanisms by which apoptotic cells down-modulate the immuno-stimulatory and pro-inflammatory functions of DC and macrophages, and the role of the interaction between apoptotic cells and APC in self-tolerance and in apoptotic cell-based therapies to prevent/treat allograft rejection and graft-versus-host disease in murine experimental systems and in humans. It also explores the role that in vivo-generated apoptotic cells could have in the beneficial effects of extracorporeal photopheresis, donor-specific transfusion, and tolerogenic DC-based therapies in transplantation

    Microneedles: A New Frontier in Nanomedicine Delivery

    Get PDF
    This review aims to concisely chart the development of two individual research fields, namely nanomedicines, with specific emphasis on nanoparticles (NP) and microparticles (MP), and microneedle (MN) technologies, which have, in the recent past, been exploited in combinatorial approaches for the efficient delivery of a variety of medicinal agents across the skin. This is an emerging and exciting area of pharmaceutical sciences research within the remit of transdermal drug delivery and as such will undoubtedly continue to grow with the emergence of new formulation and fabrication methodologies for particles and MN. Firstly, the fundamental aspects of skin architecture and structure are outlined, with particular reference to their influence on NP and MP penetration. Following on from this, a variety of different particles are described, as are the diverse range of MN modalities currently under development. The review concludes by highlighting some of the novel delivery systems which have been described in the literature exploiting these two approaches and directs the reader towards emerging uses for nanomedicines in combination with MN

    Effective and safe proton pump inhibitor therapy in acid-related diseases – A position paper addressing benefits and potential harms of acid suppression

    Full text link
    corecore