486 research outputs found

    Introduction of Dr. David F. Striffler, Third Recipient of the John W. Knutson Distinguished Service Award in Dental Public Health

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65929/1/j.1752-7325.1985.tb03842.x.pd

    Quantum authentication with key recycling

    Get PDF
    We show that a family of quantum authentication protocols introduced in [Barnum et al., FOCS 2002] can be used to construct a secure quantum channel and additionally recycle all of the secret key if the message is successfully authenticated, and recycle part of the key if tampering is detected. We give a full security proof that constructs the secure channel given only insecure noisy channels and a shared secret key. We also prove that the number of recycled key bits is optimal for this family of protocols, i.e., there exists an adversarial strategy to obtain all non-recycled bits. Previous works recycled less key and only gave partial security proofs, since they did not consider all possible distinguishers (environments) that may be used to distinguish the real setting from the ideal secure quantum channel and secret key resource.Comment: 38+17 pages, 13 figures. v2: constructed ideal secure channel and secret key resource have been slightly redefined; also added a proof in the appendix for quantum authentication without key recycling that has better parameters and only requires weak purity testing code

    Saving lives beyond 2020: The next steps

    Get PDF
    Road safety analysis can be used to understand what has been successful in the past and what needs to be changed in order to be successful to reduce severe road trauma going forward and ultimately what\u27s needed to achieve zero. This chapter covers some of the tools used to retrospectively evaluate real-life benefits of road safety measures and methods used to predict the combined effects of interventions in a road safety action plan as well as to estimate if they are sufficient to achieve targets near-term and long-term. Included are also a brief overview of methods to develop boundary conditions on what constitutes a Safe System for different road users. Further to that, the chapter lists some arguments for the need of high-quality mass and in-depth data to ensure confidence in the results and conclusions from road safety analysis. Finally, a few key messages are summarized

    Daylight quantum key distribution over 1.6 km

    Get PDF
    Quantum key distribution (QKD) has been demonstrated over a point-to-point 1.6\sim1.6-km atmospheric optical path in full daylight. This record transmission distance brings QKD a step closer to surface-to-satellite and other long-distance applications.Comment: 4 pages, 2 figures, 1 table. Submitted to PRL on 14 January 2000 for publication consideratio
    corecore