82 research outputs found

    A critical comparison of integral projection and matrix projection models for demographic analysis

    Get PDF
    Structured demographic models are among the most common and useful tools in population biology. However, the introduction of integral projection models (IPMs) has caused a profound shift in the way many demographic models are conceptualized. Some researchers have argued that IPMs, by explicitly representing demographic processes as continuous functions of state variables such as size, are more statistically efficient, biologically realistic, and accurate than classic matrix projection models, calling into question the usefulness of the many studies based on matrix models. Here, we evaluate how IPMs and matrix models differ, as well as the extent to which these differences matter for estimation of key model outputs, including population growth rates, sensitivity patterns, and life spans. First, we detail the steps in constructing and using each type of model. Second, we present a review of published demographic models, concentrating on size-based studies, which shows significant overlap in the way IPMs and matrix models are constructed and analyzed. Third, to assess the impact of various modeling decisions on demographic predictions, we ran a series of simulations based on size-based demographic data sets for five biologically diverse species. We found little evidence that discrete vital rate estimation is less accurate than continuous functions across a wide range of sample sizes or size classes (equivalently bin numbers or mesh points). Most model outputs quickly converged with modest class numbers (≥10), regardless of most other modeling decisions. Another surprising result was that the most commonly used method to discretize growth rates for IPM analyses can introduce substantial error into model outputs. Finally, we show that empirical sample sizes generally matter more than modeling approach for the accuracy of demographic outputs. Based on these results, we provide specific recommendations to those constructing and evaluating structured population models. Both our literature review and simulations question the treatment of IPMs as a clearly distinct modeling approach or one that is inherently more accurate than classic matrix models. Importantly, this suggests that matrix models, representing the vast majority of past demographic analyses available for comparative and conservation work, continue to be useful and important sources of demographic information.Support for this work was provided by NSF awards 1146489, 1242558, 1242355, 1353781, 1340024, 1753980, and 1753954, 1144807, 0841423, and 1144083. Support also came from USDA NIFA Postdoctoral Fellowship (award no. 2019-67012-29726/project accession no. 1019364) for R. K. Shriver; the Swiss Polar Institute of Food and Agriculture for N. I. Chardon; the ICREA under the ICREA Academia Programme for C. Linares; and SERDP contract RC-2512 and USDA National Institute of Food and Agriculture, Hatch project 1016746 for A .M. Louthan. This is Contribution no. 21-177-J from the Kansas Agricultural Experiment Station

    Burmese pythons in Florida: A synthesis of biology, impacts, and management tools

    Get PDF
    Burmese pythons (Python molurus bivittatus) are native to southeastern Asia, however, there is an established invasive population inhabiting much of southern Florida throughout the Greater Everglades Ecosystem. Pythons have severely impacted native species and ecosystems in Florida and represent one of the most intractable invasive-species management issues across the globe. The difficulty stems from a unique combination of inaccessible habitat and the cryptic and resilient nature of pythons that thrive in the subtropical environment of southern Florida, rendering them extremely challenging to detect. Here we provide a comprehensive review and synthesis of the science relevant to managing invasive Burmese pythons. We describe existing control tools and review challenges to productive research, identifying key knowledge gaps that would improve future research and decision making for python control. (119 pp

    Large-Scale Selective Sweep among Segregation Distorter Chromosomes in African Populations of Drosophila melanogaster

    Get PDF
    Segregation Distorter (SD) is a selfish, coadapted gene complex on chromosome 2 of Drosophila melanogaster that strongly distorts Mendelian transmission; heterozygous SD/SD+ males sire almost exclusively SD-bearing progeny. Fifty years of genetic, molecular, and theory work have made SD one of the best-characterized meiotic drive systems, but surprisingly the details of its evolutionary origins and population dynamics remain unclear. Earlier analyses suggested that the SD system arose recently in the Mediterranean basin and then spread to a low, stable equilibrium frequency (1–5%) in most natural populations worldwide. In this report, we show, first, that SD chromosomes occur in populations in sub-Saharan Africa, the ancestral range of D. melanogaster, at a similarly low frequency (∼2%), providing evidence for the robustness of its equilibrium frequency but raising doubts about the Mediterranean-origins hypothesis. Second, our genetic analyses reveal two kinds of SD chromosomes in Africa: inversion-free SD chromosomes with little or no transmission advantage; and an African-endemic inversion-bearing SD chromosome, SD-Mal, with a perfect transmission advantage. Third, our population genetic analyses show that SD-Mal chromosomes swept across the African continent very recently, causing linkage disequilibrium and an absence of variability over 39% of the length of the second chromosome. Thus, despite a seemingly stable equilibrium frequency, SD chromosomes continue to evolve, to compete with one another, or evade suppressors in the genome

    Very High Order Masking: Efficient Implementation and Security Evaluation

    Get PDF
    In this paper, we study the performances and security of recent masking algorithms specialized to parallel implementations in a 32-bit embedded software platform, for the standard AES Rijndael and the bitslice cipher Fantomas. By exploiting the excellent features of these algorithms for bitslice implementations, we first extend the recent speed records of Goudarzi and Rivain (presented at Eurocrypt 2017) and report realistic timings for masked implementations with 32 shares. We then observe that the security level provided by such implementations is uneasy to quantify with current evaluation tools. We therefore propose a new ``multi-model evaluation methodology which takes advantage of different (more or less abstract) security models introduced in the literature. This methodology allows us to both bound the security level of our implementations in a principled manner and to assess the risks of overstated security based on well understood parameters. Concretely, it leads us to conclude that these implementations withstand worst-case adversaries with >2^64 measurements under falsifiable assumptions

    Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons

    Get PDF
    Abstract Background Polyploidy is a pervasive evolutionary feature of all flowering plants and some animals, leading to genetic and epigenetic changes that affect gene expression and morphology. DNA methylation changes can produce meiotically stable epialleles, which are transmissible through selection and breeding. However, the relationship between DNA methylation and polyploid plant domestication remains elusive. Results We report comprehensive epigenomic and functional analyses, including ~12 million differentially methylated cytosines in domesticated allotetraploid cottons and their tetraploid and diploid relatives. Methylated genes evolve faster than unmethylated genes; DNA methylation changes between homoeologous loci are associated with homoeolog-expression bias in the allotetraploids. Significantly, methylation changes induced in the interspecific hybrids are largely maintained in the allotetraploids. Among 519 differentially methylated genes identified between wild and cultivated cottons, some contribute to domestication traits, including flowering time and seed dormancy. CONSTANS (CO) and CO-LIKE (COL) genes regulate photoperiodicity in Arabidopsis. COL2 is an epiallele in allotetraploid cottons. COL2A is hypermethylated and silenced, while COL2D is repressed in wild cottons but highly expressed due to methylation loss in all domesticated cottons tested. Inhibiting DNA methylation activates COL2 expression, and repressing COL2 in cultivated cotton delays flowering. Conclusions We uncover epigenomic signatures of domestication traits during cotton evolution. Demethylation of COL2 increases its expression, inducing photoperiodic flowering, which could have contributed to the suitability of cotton for cultivation worldwide. These resources should facilitate epigenetic engineering, breeding, and improvement of polyploid crops
    corecore