602 research outputs found

    Recognizing opportunities across campus: the effects of cognitive training and entrepreneurial passion on the business opportunity prototype

    Get PDF
    We analyze the effects of the program Cognitive Entrepreneurial Training in Opportunity Recognition on the accurate assessment of prototypical viability of business opportunities. The training integrates the principles of experiential learning and is designed to reach students across campus. We also investigate the moderating role of entrepreneurial passion on opportunity recognition learning. We use a quasi-experimental design with pre-test, post-test in two European universities. The results demonstrate that the training has positive significant effects on the accurate identification of business opportunities' prototypical viability. Intense positive feelings about entrepreneurship moderate the learning process. We provide insights into entrepreneurship education practice across campus.info:eu-repo/semantics/publishedVersio

    NAD(P)H:quinone oxidoreductase 1 (NQO1) P187S polymorphism and prostate cancer risk in Caucasians

    Get PDF
    NAD(P)H:quinone oxidoreductase 1 (NQO1) catalyses the reduction of quinoid compounds to hydroquinones, preventing the generation of free radicals and reactive oxygen. A “C” to “T” transversion at position 609 of NQO1, leading to a nonsynonymous amino acid change (Pro187Ser, P187S), results in an altered enzyme activity. No NQO1 protein activity was detected in NQO1 609TT genotype, and low to intermediate activity was detected in NQO1 609CT genotype compared with 609CC genotype. Thus, this polymorphism may result in altered cancer predisposition. For prostate cancer, only sparse data are available. We therefore analyzed the distribution of the NQO1 P187S SNP (single nucleotide polymorphism) in prostate cancer patients and a healthy control group. Allelic variants were determined using RFLP analysis. Overall, 232 patients without any malignancy and 119 consecutive prostate cancer patients were investigated. The genotype distribution in our cohorts followed the Hardy–Weinberg equilibrium in cases and controls. The distribution of the NQO1 codon 187 SNP did not differ significantly between prostate cancer patients and the control group (p = 0.242). There was also no association between the allelic variants and stage or Gleason score of the tumors. The NQO1 P187S SNP was not significantly associated with an increased prostate cancer risk in our cohorts. The SNP has also no influence on histopathological characteristics of the tumors. A combined analysis of all available data from published European studies also showed no significant differences in the genotype distribution between controls and prostate cancer patients. Our data suggest a minor role of the NQO1 nucleotide 609 polymorphism in prostate carcinogenesis

    The mating-specific Gα interacts with a kinesin-14 and regulates pheromone-induced nuclear migration in budding yeast

    Get PDF
    As a budding yeast cell elongates toward its mating partner, cytoplasmic microtubules connect the nucleus to the cell cortex at the growth tip. The Kar3 kinesin-like motor protein is then thought to stimulate plus-end depolymerization of these microtubules, thus drawing the nucleus closer to the site where cell fusion and karyogamy will occur. Here, we show that pheromone stimulates a microtubule-independent interaction between Kar3 and the mating-specific Gα protein Gpa1 and that Gpa1 affects both microtubule orientation and cortical contact. The membrane localization of Gpa1 was found to polarize early in the mating response, at about the same time that the microtubules begin to attach to the incipient growth site. In the absence of Gpa1, microtubules lose contact with the cortex upon shrinking and Kar3 is improperly localized, suggesting that Gpa1 is a cortical anchor for Kar3. We infer that Gpa1 serves as a positional determinant for Kar3-bound microtubule plus ends during mating. © 2009 by The American Society for Cell Biology

    Iwasawa theory and p-adic L-functions over Zp2-extensions

    Get PDF
    We construct a two-variable analogue of Perrin-Riou’s p-adic regulator map for the Iwasawa cohomology of a crystalline representation of the absolute Galois group of Q p , over a Galois extension whose Galois group is an abelian p-adic Lie group of dimension 2. We use this regulator map to study p-adic representations of global Galois groups over certain abelian extensions of number fields whose localisation at the primes above p is an extension of the above type. In the example of the restriction to an imaginary quadratic field of the representation attached to a modular form, we formulate a conjecture on the existence of a “zeta element”, whose image under the regulator map is a p-adic L-function. We show that this conjecture implies the known properties of the 2-variable p-adic L-functions constructed by Perrin-Riou and Kim

    Baseline azithromycin resistance in the gut microbiota of preterm born infants

    Get PDF
    Background Macrolides, including azithromycin, are increasingly used in preterm-born infants to treat Ureaplasma infections. The baseline carriage of macrolide resistance genes in the preterm stool microbiota is unknown. Objectives Identify carriage of azithromycin resistant bacteria and the incidence of macrolide resistant genes. Methods Azithromycin resistant bacteria were isolated from serial stool samples obtained from preterm infants (≤32 weeks’ gestation) by culturing aerobically/anaerobically, in the presence/absence of azithromycin. Using quantitative PCR, we targeted 6 common macrolide resistance genes (erm(A), erm(B), erm(C), erm(F), mef(A/E), msr(A)) in DNA extracted from selected bacteria resistant to azithromycin. Results From 89 stool samples from 37 preterm-born infants, 93.3% showed bacterial growth in aerobic or anaerobic conditions. From the 280 azithromycin resistant isolates that were identified, Staphylococcus (75%) and Enterococcus (15%) species dominated. Macrolide resistance genes were identified in 91% of resistant isolates: commonest were erm(C) (46% of isolates) and msr(A) (40%). Multiple macrolide resistance genes were identified in 18% of isolates. Conclusion Macrolide resistance is common in the gut microbiota of preterm-born infants early in life, most likely acquired from exposure to the maternal microbiota. It will be important to assess modulation of macrolide resistance, if macrolide treatment becomes routine in the management of preterm infants. Impact Statement Azithromycin resistance is present in the stool microbiota in the first month of life in preterm infants 91% of azithromycin resistant bacteria carried at least one of 6 common macrolide resistant genes Increasing use of macrolides in the preterm population makes this an important area of stud

    GUP1 and its close homologue GUP2, encoding multi-membrane-spanning proteins involved in active glycerol uptake in Saccharomyces cerevisiae

    Get PDF
    Many yeast species can utilise glycerol, both as sole carbon source and as an osmolyte. In Saccharomyces cerevisiae, physiological studies have previously shown the presence of an active uptake system driven by electrogenic proton symport. We have used transposon mutagenesis to isolate mutants affected in the transport of glycerol into the cell. Here we present the identification of YGL084c, encoding a multi-membrane-spanning protein, as being essential for proton symport of glycerol into Saccharomyces cerevisiae. The gene is named GUP1 (Glycerol UPtake) and is important for growth on glycerol as carbon and energy source, as well as for osmotic protection by added glycerol, of a strain deficient in glycerol production. Another ORF, YPL189w, presenting a high degree of homology to YGL084c, similarly appears to be involved in active glycerol uptake in salt-containing glucose-based media in strains deficient in glycerol production. Analogously, this gene is named GUP2. To our knowledge, this is the first report on a gene product involved in active transport of glycerol in yeasts. Mutations with the same phenotypes occurred in two other open reading frames of previously unknown function, YDL074c and YPL180w.Comunidade Europeia (CE) - contract BIO4-CT95-0161

    Seamless Gene Tagging by Endonuclease-Driven Homologous Recombination

    Get PDF
    Gene tagging facilitates systematic genomic and proteomic analyses but chromosomal tagging typically disrupts gene regulatory sequences. Here we describe a seamless gene tagging approach that preserves endogenous gene regulation and is potentially applicable in any species with efficient DNA double-strand break repair by homologous recombination. We implement seamless tagging in Saccharomyces cerevisiae and demonstrate its application for protein tagging while preserving simultaneously upstream and downstream gene regulatory elements. Seamless tagging is compatible with high-throughput strain construction using synthetic genetic arrays (SGA), enables functional analysis of transcription antisense to open reading frames and should facilitate systematic and minimally-invasive analysis of gene functions

    Micro-a-fluidics ELISA for rapid CD4 cell count at the point-of-care

    Get PDF
    HIV has become one of the most devastating pathogens in human history. Despite fast progress in HIV-related basic research, antiretroviral therapy (ART) remains the most effective method to save AIDS patients' lives. Unfortunately, ART cannot be universally accessed, especially in developing countries, due to the lack of effective treatment monitoring diagnostics. Here, we present an inexpensive, rapid and portable micro-a-fluidic platform, which can streamline the process of an enzyme-linked immunosorbent assay (ELISA) in a fully automated manner for CD4 cell count. The micro-a-fluidic CD4 cell count is achieved by eliminating operational fluid flow via “moving the substrate”, as opposed to “flowing liquid” in traditional ELISA or microfluidic methods. This is the first demonstration of capturing and detecting cells from unprocessed whole blood using the enzyme-linked immunosorbent assay (ELISA) in a microfluidic channel. Combined with cell phone imaging, the presented micro-a-fluidic ELISA platform holds great promise for offering rapid CD4 cell count to scale up much needed ART in resource-constrained settings. The developed system can be extended to multiple areas for ELISA-related assays.the Center for Integration of Medicine and Innovative Technology ; the U.S. Army Medical Research & Materiel Command (USAMRMC) ; the Telemedicine & Advanced Technology Research Center (TATRC).publisher versio

    Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.

    Get PDF
    The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient
    • …
    corecore