934 research outputs found

    GW approximation with self-screening correction

    Full text link
    The \emph{GW} approximation takes into account electrostatic self-interaction contained in the Hartree potential through the exchange potential. However, it has been known for a long time that the approximation contains self-screening error as evident in the case of the hydrogen atom. When applied to the hydrogen atom, the \emph{GW} approximation does not yield the exact result for the electron removal spectra because of the presence of self-screening: the hole left behind is erroneously screened by the only electron in the system which is no longer present. We present a scheme to take into account self-screening and show that the removal of self-screening is equivalent to including exchange diagrams, as far as self-screening is concerned. The scheme is tested on a model hydrogen dimer and it is shown that the scheme yields the exact result to second order in (U0U1)/2t(U_{0}-U_{1})/2t where U0U_{0} and U1U_{1} are respectively the onsite and offsite Hubbard interaction parameters and tt the hopping parameter.Comment: 9 pages, 2 figures; Submitted to Phys. Rev.

    Normal Modes of a Vortex in a Trapped Bose-Einstein Condensate

    Full text link
    A hydrodynamic description is used to study the normal modes of a vortex in a zero-temperature Bose-Einstein condensate. In the Thomas-Fermi (TF) limit, the circulating superfluid velocity far from the vortex core provides a small perturbation that splits the originally degenerate normal modes of a vortex-free condensate. The relative frequency shifts are small in all cases considered (they vanish for the lowest dipole mode with |m|=1), suggesting that the vortex is stable. The Bogoliubov equations serve to verify the existence of helical waves, similar to those of a vortex line in an unbounded weakly interacting Bose gas. In the large-condensate (small-core) limit, the condensate wave function reduces to that of a straight vortex in an unbounded condensate; the corresponding Bogoliubov equations have no bound-state solutions that are uniform along the symmetry axis and decay exponentially far from the vortex core.Comment: 15 pages, REVTEX, 2 Postscript figures, to appear in Phys. Rev. A. We have altered the material in Secs. 3B and 4 in connection with the normal modes that have |m|=1. Our present treatment satisfies the condition that the fundamental dipole mode of a condensate with (or without) a vortex should have the bare frequency $\omega_\perp

    Statistical mechanics of Floquet systems: the pervasive problem of near degeneracies

    Full text link
    The statistical mechanics of periodically driven ("Floquet") systems in contact with a heat bath exhibits some radical differences from the traditional statistical mechanics of undriven systems. In Floquet systems all quasienergies can be placed in a finite frequency interval, and the number of near degeneracies in this interval grows without limit as the dimension N of the Hilbert space increases. This leads to pathologies, including drastic changes in the Floquet states, as N increases. In earlier work these difficulties were put aside by fixing N, while taking the coupling to the bath to be smaller than any quasienergy difference. This led to a simple explicit theory for the reduced density matrix, but with some major differences from the usual time independent statistical mechanics. We show that, for weak but finite coupling between system and heat bath, the accuracy of a calculation within the truncated Hilbert space spanned by the N lowest energy eigenstates of the undriven system is limited, as N increases indefinitely, only by the usual neglect of bath memory effects within the Born and Markov approximations. As we seek higher accuracy by increasing N, we inevitably encounter quasienergy differences smaller than the system-bath coupling. We therefore derive the steady state reduced density matrix without restriction on the size of quasienergy splittings. In general, it is no longer diagonal in the Floquet states. We analyze, in particular, the behavior near a weakly avoided crossing, where quasienergy near degeneracies routinely appear. The explicit form of our results for the denisty matrix gives a consistent prescription for the statistical mechanics for many periodically driven systems with N infinite, in spite of the Floquet state pathologies.Comment: 31 pages, 3 figure

    Vortex Waves in a Cloud of Bose Einstein - Condensed, Trapped Alkali - Metal Atoms

    Full text link
    We consider the vortex state solution for a rotating cloud of trapped, Bose Einstein - condensed alkali atoms and study finite temperature effects. We find that thermally excited vortex waves can distort the vortex state significantly, even at the very low temperatures relevant to the experiments.Comment: to appear in Phys. Rev.

    Beyond the Thomas-Fermi approximation for a trapped condensed Bose-Einstein gas

    Full text link
    Corrections to the zero-temperature Thomas-Fermi description of a dilute interacting condensed Bose-Einstein gas confined in an isotropic harmonic trap arise due to the presence of a boundary layer near the condensate surface. Within the Bogoliubov approximation, the various contributions to the ground-state condensate energy all have terms of order R^{-4}ln R and R^{-4}, where R is the number-dependent dimensionless condensate radius in units of the oscillator length. The zero-order hydrodynamic density-fluctuation amplitudes are extended beyond the Thomas-Fermi radius through the boundary layer to provide a uniform description throughout all space. The first-order correction to the excitation frequencies is shown to be of order R^{-4}.Comment: 12 pages, 2 figures, revtex. Completely revised discussion of the boundary-layer corrections to collective excitations, and two new figures added. To appear in Phys. Rev. A (October, 1998

    Unitarity potentials and neutron matter at the unitary limit

    Full text link
    We study the equation of state of neutron matter using a family of unitarity potentials all of which are constructed to have infinite 1S0^1S_0 scattering lengths asa_s. For such system, a quantity of much interest is the ratio ξ=E0/E0free\xi=E_0/E_0^{free} where E0E_0 is the true ground-state energy of the system, and E0freeE_0^{free} is that for the non-interacting system. In the limit of as±a_s\to \pm \infty, often referred to as the unitary limit, this ratio is expected to approach a universal constant, namely ξ0.44(1)\xi\sim 0.44(1). In the present work we calculate this ratio ξ\xi using a family of hard-core square-well potentials whose asa_s can be exactly obtained, thus enabling us to have many potentials of different ranges and strengths, all with infinite asa_s. We have also calculated ξ\xi using a unitarity CDBonn potential obtained by slightly scaling its meson parameters. The ratios ξ\xi given by these different unitarity potentials are all close to each other and also remarkably close to 0.44, suggesting that the above ratio ξ\xi is indifferent to the details of the underlying interactions as long as they have infinite scattering length. A sum-rule and scaling constraint for the renormalized low-momentum interaction in neutron matter at the unitary limit is discussed.Comment: 7.5 pages, 7 figure

    Off-axis vortices in trapped Bose condensed gases: angular momentum and frequency splitting

    Get PDF
    We consider non centered vortices and their arrays in a cylindrically trapped Bose-Einstein condensate at zero temperature. We study the kinetic energy and the angular momentum per particle in the Thomas Fermi regime and their dependence on the distance of the vortices from the center of the trap. Using a perturbative approach with respect to the velocity-field of the vortices, we calculate to first order the frequency shift of the collective low-lying excitations due to the presence of an off-center vortex or a vortex array, and compare these results with predictions which would be obtained by the application of a simple sum-rule approach, previously found to be very successful for centered vortices. It turns out that the simple sum-rule approach fails for off-centered vortices.Comment: 11 pages, LaTeX, 3 figures. Perturbative approach adde

    Theory of coherent Bragg spectroscopy of a trapped Bose-Einstein condensate

    Full text link
    We present a detailed theoretical analysis of Bragg spectroscopy from a Bose-Einstein condensate at T=0K. We demonstrate that within the linear response regime, both a quantum field theory treatment and a meanfield Gross-Pitaevskii treatment lead to the same value for the mean evolution of the quasiparticle operators. The observable for Bragg spectroscopy experiments, which is the spectral response function of the momentum transferred to the condensate, can therefore be calculated in a meanfield formalism. We analyse the behaviour of this observable by carrying out numerical simulations in axially symmetric three-dimensional cases and in two dimensions. An approximate analytic expression for the observable is obtained and provides a means for identifying the relative importance of three broadening and shift mechanisms (meanfield, Doppler, and finite pulse duration) in different regimes. We show that the suppression of scattering at small values of q observed by Stamper-Kurn et al. [Phys. Rev. Lett. 83, 2876 (1999)] is accounted for by the meanfield treatment, and can be interpreted in terms of the interference of the u and v quasiparticle amplitudes. We also show that, contrary to the assumptions of previous analyses, there is no regime for trapped condensates for which the spectral response function and the dynamic structure factor are equivalent. Our numerical calculations can also be performed outside the linear response regime, and show that at large laser intensities a significant decrease in the shift of the spectral response function can occur due to depletion of the initial condensate.Comment: RevTeX4 format, 16 pages plus 7 eps figures; Update to published version: minors changes and an additional figure. (To appear in Phys. Rev. A

    Vortex stabilization in a small rotating asymmetric Bose-Einstein condensate

    Full text link
    We use a variational method to investigate the ground-state phase diagram of a small, asymmetric Bose-Einstein condensate with respect to the dimensionless interparticle interaction strength γ\gamma and the applied external rotation speed Ω\Omega. For a given γ\gamma, the transition lines between no-vortex and vortex states are shifted toward higher Ω\Omega relative to those for the symmetric case. We also find a re-entrant behavior, where the number of vortex cores can decrease for large Ω\Omega. In addition, stabilizing a vortex in a rotating asymmetric trap requires a minimum interaction strength. For a given asymmetry, the evolution of the variational parameters with increasing Ω\Omega shows two different types of transitions (sharp or continuous), depending on the strength of the interaction. We also investigate transitions to states with higher vorticity; the corresponding angular momentum increases continuously as a function of Ω\Omega

    Multiple electron-hole scattering effect on quasiparticle properties in a homogeneous electron gas

    Get PDF
    We present a detailed study of a contribution of the T matrix accounting for multiple scattering between an electron and a hole to the quasiparticle self-energy. This contribution is considered as an additional term to the GW self-energy. The study is based on a variational solution of the T-matrix integral equation within a local approximation. A key quantity of such a solution, the local electron-hole interaction, is obtained at the small four-momentum transfer limit. Performed by making use of this limit form, extensive calculations of quasiparticle properties in the homogeneous electron gas over a broad range of electron densities are reported. We carry out an analysis of how the T-matrix contribution affects the quasiparticle damping rate, the quasiparticle energy, the renormalization constant, and the effective mass enhancement. We find that in comparison with the GW approximation the inclusion of the T matrix leads to an essential increase of the damping rate, a slight reduction of the GW band narrowing, a decrease of the renormalization constant at the Fermi wave vector, and some "weighting" of quasiparticles at the Fermi surface.Comment: 12 pages, 11 figures, 1 tabl
    corecore