2,564 research outputs found
Radiative rotational lifetimes and state-resolved relative detachment cross sections from photodetachment thermometry of molecular anions in a cryogenic storage ring
Photodetachment thermometry on a beam of OH in a cryogenic storage ring
cooled to below 10 K is carried out using two-dimensional, frequency and time
dependent photodetachment spectroscopy over 20 minutes of ion storage. In
equilibrium with the low-level blackbody field, we find an effective radiative
temperature near 15 K with about 90% of all ions in the rotational ground
state. We measure the J = 1 natural lifetime (about 193 s) and determine the
OH rotational transition dipole moment with 1.5% uncertainty. We also
measure rotationally dependent relative near-threshold photodetachment cross
sections for photodetachment thermometry.Comment: Manuscript LaTeX with 5 pages, 3 figures, and 1 table plus LaTeX
supplement with 12 pages, 3 figures and 3 tables. This article has been
accepted by Physical Review Letter
Dzyaloshinskii-Moriya interaction in NaVO: a microscopic study
We present a unified account of magnetic exchange and Raman scattering in the
quasi-one-dimensional transition-metal oxide NaVO. Based on a
cluster-model approach explicit expressions for the exchange integral and the
Raman-operator are given. It is demonstrated that a combination of the
electronic-structure and the Dzyaloshinskii-Moriya interaction, allowed by
symmetry in this material, are responsible for the finite Raman cross-section
giving rise to both, one- and two-magnon scattering amplitudes.Comment: 7 pages, 1 figur
PARP1 is required for adhesion molecule expression in atherogenesis
Aims Atherosclerosis is the leading cause of death in Western societies and a chronic inflammatory disease. However, the key mediators linking recruitment of inflammatory cells to atherogenesis remain poorly defined. Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme, which plays a role in acute inflammatory diseases. Methods and results In order to test the role of PARP in atherogenesis, we applied chronic pharmacological PARP inhibition or genetic PARP1 deletion in atherosclerosis-prone apolipoprotein E-deficient mice and measured plaque formation, adhesion molecules, and features of plaque vulnerability. After 12 weeks of high-cholesterol diet, plaque formation in male apolipoprotein E-deficient mice was decreased by chronic inhibition of enzymatic PARP activity or genetic deletion of PARP1 by 46 or 51%, respectively (P < 0.05, n â„ 9). PARP inhibition or PARP1 deletion reduced PARP activity and diminished expression of inducible nitric oxide synthase, vascular cell adhesion molecule-1, and P- and E-selectin. Furthermore, chronic PARP inhibition reduced plaque macrophage (CD68) and T-cell infiltration (CD3), increased fibrous cap thickness, and decreased necrotic core size and cell death (P < 0.05, n â„ 6). Conclusion Our data provide pharmacological and genetic evidence that endogenous PARP1 is required for atherogenesis in vivo by increasing adhesion molecules with endothelial activation, enhancing inflammation, and inducing features of plaque vulnerability. Thus, inhibition of PARP1 may represent a promising therapeutic target in atherosclerosi
The nature of localization in graphene under quantum Hall conditions
Particle localization is an essential ingredient in quantum Hall physics
[1,2]. In conventional high mobility two-dimensional electron systems Coulomb
interactions were shown to compete with disorder and to play a central role in
particle localization [3]. Here we address the nature of localization in
graphene where the carrier mobility, quantifying the disorder, is two to four
orders of magnitude smaller [4,5,6,7,8,9,10]. We image the electronic density
of states and the localized state spectrum of a graphene flake in the quantum
Hall regime with a scanning single electron transistor [11]. Our microscopic
approach provides direct insight into the nature of localization. Surprisingly,
despite strong disorder, our findings indicate that localization in graphene is
not dominated by single particle physics, but rather by a competition between
the underlying disorder potential and the repulsive Coulomb interaction
responsible for screening.Comment: 18 pages, including 5 figure
Observation of Electron-Hole Puddles in Graphene Using a Scanning Single Electron Transistor
The electronic density of states of graphene is equivalent to that of
relativistic electrons. In the absence of disorder or external doping the Fermi
energy lies at the Dirac point where the density of states vanishes. Although
transport measurements at high carrier densities indicate rather high
mobilities, many questions pertaining to disorder remain unanswered. In
particular, it has been argued theoretically, that when the average carrier
density is zero, the inescapable presence of disorder will lead to electron and
hole puddles with equal probability. In this work, we use a scanning single
electron transistor to image the carrier density landscape of graphene in the
vicinity of the neutrality point. Our results clearly show the electron-hole
puddles expected theoretically. In addition, our measurement technique enables
to determine locally the density of states in graphene. In contrast to
previously studied massive two dimensional electron systems, the kinetic
contribution to the density of states accounts quantitatively for the measured
signal. Our results suggests that exchange and correlation effects are either
weak or have canceling contributions.Comment: 13 pages, 5 figure
Endothelial overexpression of LOX-1 increases plaque formation and promotes atherosclerosis in vivo
Aims Lectin-like oxLDL receptor-1 (LOX-1) mediates the uptake of oxidized low-density lipoprotein (oxLDL) in endothelial cells and macrophages. However, the different atherogenic potential of LOX-1-mediated endothelial and macrophage oxLDL uptake remains unclear. The present study was designed to investigate the in vivo role of endothelial LOX-1 in atherogenesis. Methods and results Endothelial-specific LOX-1 transgenic mice were generated using the Tie2 promoter (LOX-1TG). Oxidized low-density lipoprotein uptake was enhanced in cultured endothelial cells, but not in macrophages of LOX-1TG mice. Six-week-old male LOX-1TG and wild-type (WT) mice were fed a high-cholesterol diet (HCD) for 30 weeks. Increased reactive oxygen species production, impaired endothelial nitric oxide synthase activity and endothelial dysfunction were observed in LOX-1TG mice as compared with WT littermates. LOX-1 overexpression led to p38 phosphorylation, increased nuclear factor ÎșB activity and subsequent up-regulation of vascular cell adhesion molecule-1, thereby favouring macrophage accumulation and aortic fatty streaks. Consistently, HCD-fed double-mutant LOX-1TG/ApoEâ/â displayed oxidative stress and vascular inflammation with higher aortic plaques than ApoEâ/â controls. Finally, bone marrow transplantation experiments showed that endothelial LOX-1 was sufficient for atherosclerosis development in vivo. Conclusions Endothelial-specific LOX-1 overexpression enhanced aortic oxLDL levels, thereby favouring endothelial dysfunction, vascular inflammation and plaque formation. Thus, LOX-1 may serve as a novel therapeutic target for atherosclerosi
Thermodynamics of Spin S = 1/2 Antiferromagnetic Uniform and Alternating-Exchange Heisenberg Chains
The magnetic susceptibility chi and specific heat C versus temperature T of
the spin-1/2 antiferromagnetic alternating-exchange (J1 and J2) Heisenberg
chain are studied for the entire range 0 \leq alpha \leq 1 of the alternation
parameter alpha = J2/J1. For the uniform chain (alpha = 1), detailed
comparisons of the high-accuracy chi(T) and C(T) Bethe ansatz data of Kluemper
and Johnston are made with the asymptotically exact low-T field theory
predictions of Lukyanov. QMC simulations and TMRG calculations of chi(alpha,T)
are presented. From the low-T TMRG data, the spin gap Delta(alpha)/J1 is
extracted for 0.8 \leq alpha \leq 0.995. High accuracy fits to all of the above
numerical data are obtained. We examine in detail the theoretical predictions
of Bulaevskii for chi(alpha,T) and compare them with our results. Our
experimental chi(T) and C(T) data for NaV2O5 single crystals are modeled in
detail. The chi(T) data above the spin dimerization temperature Tc = 34 K are
not in agreement with the prediction for the uniform Heisenberg chain, but can
be explained if there is a moderate ferromagnetic interchain coupling and/or if
J changes with T. By fitting the chi(T) data, we obtain Delta(T = 0) = 103(2)
K, alternation parameter delta(0) = (1 - alpha)/(1 + alpha) = 0.034(6) and
average exchange constant J(0) = 640(80) K. The delta(T) and Delta(T) are
derived from the data. A spin pseudogap with a large magnitude \approx 0.4
Delta(0) is consistently found just above Tc, which decreases with increasing
T. Analysis of our C(T) data indicates that at Tc, at least 77% of the entropy
change due to the transition at Tc and associated order parameter fluctuations
arise from the lattice and/or charge degrees of freedom and less than 23% from
the spin degrees of freedom.Comment: 53 two-column REVTeX pages, 50 embedded figures, 7 tables. Revisions
required due to incorrect Eq. (39) in Ref. 51 which gives the low-T
approximation for the specific heat of a S = 1/2 1D system with a spin gap;
no conclusions were changed. Additional minor revisions made. Phys. Rev. B
(in press
Orbital state and magnetic properties of LiV_2 O_4
LiV_2 O_4 is one of the most puzzling compounds among transition metal oxides
because of its heavy fermion like behavior at low temperatures. In this paper
we present results for the orbital state and magnetic properties of LiV_2 O_4
obtained from a combination of density functional theory within the local
density approximation and dynamical mean-field theory (DMFT). The DMFT
equations are solved by quantum Monte Carlo simulations. The trigonal crystal
field splits the V 3d orbitals such that the a_{1g} and e_{g}^{pi} orbitals
cross the Fermi level, with the former being slightly lower in energy and
narrower in bandwidth. In this situation, the d-d Coulomb interaction leads to
an almost localization of one electron per V ion in the a_{1g} orbital, while
the e_{g}^{pi} orbitals form relatively broad bands with 1/8 filling. 2The
theoretical high-temperature paramagnetic susceptibility chi(T) follows a
Curie-Weiss law with an effective paramagnetic moment p_{eff}=1.65 in agreement
with the experimental results.Comment: 11 pages, 10 figures, 2 table
Study of Z Boson Pair Production in e+e- Collisions at LEP at \sqrt{s}=189 GeV
The pair production of Z bosons is studied using the data collected by the L3
detector at LEP in 1998 in e+e- collisions at a centre-of-mass energy of 189
GeV. All the visible final states are considered and the cross section of this
process is measured to be 0.74 +0.15 -0.14 (stat.) +/- 0.04 (syst.) pb. Final
states containing b quarks are enhanced by a dedicated selection and their
production cross section is found to be 0.18 +0.09 -0.07 (stat.) +/- 0.02
(syst.) pb. Both results are in agreement with the Standard Model predictions.
Limits on anomalous couplings between neutral gauge bosons are derived from
these measurements
- âŠ