86 research outputs found

    Antagonism of neuromuscular blockade but not muscle relaxation affects depth of anaesthesia

    Get PDF
    Background. Conflicting effects of neuromuscular blocking drugs and anticholinesterases on depth of anaesthesia have been reported. Therefore we evaluated the effect of atracurium and neostigmine on bispectral index (BIS) and middle-latency auditory evoked potentials (AAI). Methods. We studied 40 patients (ASA I-II) aged 18-69 yr. General anaesthesia consisted of propofol and remifentanil by target-controlled infusion and neuromuscular function was monitored by electromyography. When BIS reached stable values, patients were randomly assigned to one of two groups. Group 1 received atracurium 0.4 mg kg−1 and, 5 min later, the same volume of NaCl 0.9%; group 2 received saline first and then atracurium. When the first twitch of a train of four reached 10% of control intensity, patients were again randomized: one group (N) received neostigmine 0.04 mg kg−1 and glycopyrrolate 0.01 mg kg−1, and the control group (G) received only glycopyrrolate. Results. Injection of atracurium or NaCl 0.9% had no effect on BIS or AAI. After neostigmine-glycopyrrolate, BIS and AAI increased significantly (mean maximal change of BIS 7.1 [sd 7.5], P<0.001; mean maximal change of AAI 9.7 [10.5], P<0.001). When glycopyrrolate was injected alone BIS and AAI also increased (mean maximal change of BIS 2.2 [3.4], P=0.008; mean maximal change of AAI 3.5 [5.7], P=0.012), but this increase was significantly less than in group N (P=0.012 for BIS; P=0.027 for AAI). Conclusion. These data suggest that neostigmine alters the state of propofol-remifentanil anaesthesia and may enhance recover

    Antagonism of neuromuscular blockade but not muscle relaxation affects depth of anaesthesia

    Get PDF
    BACKGROUND: Conflicting effects of neuromuscular blocking drugs and anticholinesterases on depth of anaesthesia have been reported. Therefore we evaluated the effect of atracurium and neostigmine on bispectral index (BIS) and middle-latency auditory evoked potentials (AAI). METHODS: We studied 40 patients (ASA I-II) aged 18-69 yr. General anaesthesia consisted of propofol and remifentanil by target-controlled infusion and neuromuscular function was monitored by electromyography. When BIS reached stable values, patients were randomly assigned to one of two groups. Group 1 received atracurium 0.4 mg kg(-1) and, 5 min later, the same volume of NaCl 0.9%; group 2 received saline first and then atracurium. When the first twitch of a train of four reached 10% of control intensity, patients were again randomized: one group (N) received neostigmine 0.04 mg kg(-1) and glycopyrrolate 0.01 mg kg(-1), and the control group (G) received only glycopyrrolate. RESULTS: Injection of atracurium or NaCl 0.9% had no effect on BIS or AAI. After neostigmine-glycopyrrolate, BIS and AAI increased significantly (mean maximal change of BIS 7.1 [SD 7.5], P&lt;0.001; mean maximal change of AAI 9.7 [10.5], P&lt;0.001). When glycopyrrolate was injected alone BIS and AAI also increased (mean maximal change of BIS 2.2 [3.4], P=0.008; mean maximal change of AAI 3.5 [5.7], P=0.012), but this increase was significantly less than in group N (P=0.012 for BIS; P=0.027 for AAI). CONCLUSION: These data suggest that neostigmine alters the state of propofol-remifentanil anaesthesia and may enhance recovery

    Development and external validation of a clinical prediction model for functional impairment after intracranial tumor surgery

    Get PDF
    OBJECTIVE Decision-making for intracranial tumor surgery requires balancing the oncological benefit against the risk for resection-related impairment. Risk estimates are commonly based on subjective experience and generalized num-bers from the literature, but even experienced surgeons overestimate functional outcome after surgery. Today, there is no reliable and objective way to preoperatively predict an individual patient's risk of experiencing any functional impair-ment. METHODS The authors developed a prediction model for functional impairment at 3 to 6 months after microsurgical resection, defined as a decrease in Karnofsky Performance Status of >= 10 points. Two prospective registries in Swit- zerland and Italy were used for development. External validation was performed in 7 cohorts from Sweden, Norway, Germany, Austria, and the Netherlands. Age, sex, prior surgery, tumor histology and maximum diameter, expected major brain vessel or cranial nerve manipulation, resection in eloquent areas and the posterior fossa, and surgical approach were recorded. Discrimination and calibration metrics were evaluated. RESULTS In the development (2437 patients, 48.2% male; mean age +/- SD: 55 +/- 15 years) and external validation (2427 patients, 42.4% male; mean age +/- SD: 58 +/- 13 years) cohorts, functional impairment rates were 21.5% and 28.5%, respectively. In the development cohort, area under the curve (AUC) values of 0.72 (95% CI 0.69-0.74) were observed. In the pooled external validation cohort, the AUC was 0.72 (95% CI 0.69-0.74), confirming generalizability. Calibration plots indicated fair calibration in both cohorts. The tool has been incorporated into a web-based application available at https://neurosurgery.shinyapps.io/impairment/. CONCLUSIONS Functional impairment after intracranial tumor surgery remains extraordinarily difficult to predict, al- though machine learning can help quantify risk. This externally validated prediction tool can serve as the basis for case by-case discussions and risk-to-benefit estimation of surgical treatment in the individual patient.Scientific Assessment and Innovation in Neurosurgical Treatment Strategie

    Microbial shifts in the aging mouse gut

    Get PDF
    YesBackground: The changes that occur in the microbiome of aging individuals are unclear, especially in light of the imperfect correlation of frailty with age. Studies in older human subjects have reported subtle effects, but these results may be confounded by other variables that often change with age such as diet and place of residence. To test these associations in a more controlled model system, we examined the relationship between age, frailty, and the gut microbiome of female C57BL/6 J mice. Results: The frailty index, which is based on the evaluation of 31 clinical signs of deterioration in mice, showed a near-perfect correlation with age. We observed a statistically significant relationship between age and the taxonomic composition of the corresponding microbiome. Consistent with previous human studies, the Rikenellaceae family, which includes the Alistipes genus, was the most significantly overrepresented taxon within middle-aged and older mice. The functional profile of the mouse gut microbiome also varied with host age and frailty. Bacterial-encoded functions that were underrepresented in older mice included cobalamin (B12) and biotin (B7) biosynthesis, and bacterial SOS genes associated with DNA repair. Conversely, creatine degradation, associated with muscle wasting, was overrepresented within the gut microbiomes of the older mice, as were bacterial-encoded β-glucuronidases, which can influence drug-induced epithelial cell toxicity. Older mice also showed an overabundance of monosaccharide utilization genes relative to di-, oligo-, and polysaccharide utilization genes, which may have a substantial impact on gut homeostasis. Conclusion: We have identified taxonomic and functional patterns that correlate with age and frailty in the mouse microbiome. Differences in functions related to host nutrition and drug pharmacology vary in an age-dependent manner, suggesting that the availability and timing of essential functions may differ significantly with age and frailty. Future work with larger cohorts of mice will aim to separate the effects of age and frailty, and other factors.This work was supported by the Canadian Institutes of Health Research (CIHR) through an Emerging Team Grant to RGB, CIHR Operating Grants to Langille et al. Microbiome 2014, 2:50 Page 10 of 12 http://www.microbiomejournal.com/content/2/1/50 SEH (MOP 126018) and RAR (MOP 93718), and a CIHR Fellowship to MGIL. Infrastructure was supported by the Canada Foundation for Innovation through a grant to RGB. RGB also acknowledges the support of the Canada Research Chairs program

    Effect of decurarisation on depth of anaesthesia.

    No full text

    The structures of Salmonella typhimurium LT2 neuraminidase and its complexes with three inhibitors at high resolution

    No full text
    The structure of Salmonella typhimurium LT2 neuraminidase (STNA) is reported here to a resolution of 1.6 Angstrom together with the structures of three complexes of STNA with different inhibitors. The first is 2-deoxy-2,3-dehydro-N-acetyl-neuraminic acid (Neu5Ac2en or DANA), the second and third are phosphonate derivatives of N-acetyl-neuraminic acid (NANA) which have phosphonate groups at the C2 position equatorial (ePANA) and axial (aPANA) to the plane of the sugar ring. The complex structures are at resolutions of 1.6 Angstrom, 1.6 Angstrom and 1.9 Angstrom, respectively.These analyses show the STNA active site to be topologically inflexible and the interactions to be dominated by the arginine triad, with the pyranose rings of the inhibitors undergoing distortion to occupy the space available. Solvent structure differs only around the third phosphonate oxygen, which attracts a potassium ion.The STNA structure is topologically identical to the previously reported influenza virus neuraminidase structures, although very different in detail; the root-mean-square (r.m.s.) deviation for 210 C-alpha positions considered equivalent is 2.28 Angstrom (out of a total of 390 residues in influenza and 381 in STNA). The active site residues are more highly conserved, in that both the viral and bacterial structures contain an arginine triad, a hydrophobic pocket, a tyrosine and a glutamic acid residue at the base of the site and a potential proton-donating aspartic acid. However, differences in binding to O4 and to the glycerol side-chain may reflect the different kinetics employed by the two enzymes. (C) 1996 Academic Press Limited</p

    Patterns of care: burr-hole cover application for chronic subdural hematoma trepanation

    Full text link
    OBJECTIVE: Skin depressions may appear as undesired effects after burr-hole trepanation for the evacuation of chronic subdural hematomas (cSDH). Placement of burr-hole covers to reconstruct skull defects can prevent skin depressions, with the potential to improve the aesthetic result and patient satisfaction. The perception of the relevance of this practice, however, appears to vary substantially among neurosurgeons. The authors aimed to identify current practice variations with regard to the application of burr-hole covers after trepanation for cSDH. METHODSAn electronic survey containing 12 questions was sent to resident and faculty neurosurgeons practicing in different parts of the world, as identified by an Internet search. All responses completed between September 2018 and December 2018 were considered. Descriptive statistics and logistic regression were used to analyze the data. RESULTSA total of 604 responses were obtained, of which 576 (95.4%) provided complete data. The respondents’ mean age was 42.4 years (SD 10.5), and 86.5% were male. The sample consisted of residents, fellows, junior/senior consultants, and department chairs from 79 countries (77.4% Europe, 11.8% Asia, 5.4% America, 3.5% Africa, and 1.9% Australasia). Skin depressions were considered a relevant issue by 31.6%, and 76.0% indicated that patients complain about skin depressions more or less frequently. Burr-hole covers are placed by 28.1% in the context of cSDH evacuation more or less frequently. The most frequent reasons for not placing a burr-hole cover were the lack of proven benefit (34.8%), followed by additional costs (21.9%), technical difficulty (19.9%), and fear of increased complications (4.9%). Most respondents (77.5%) stated that they would consider placing burr-hole covers in the future if there was evidence for superiority of the practice. The use of burr-hole covers varied substantially across countries, but a country’s gross domestic product per capita was not associated with their placement. CONCLUSIONSOnly a minority of neurosurgeons place burr-hole covers after trepanation for cSDH on a regular basis, even though the majority of participants reported complaints from patients regarding postoperative skin depressions. There are significant differences in the patterns of care among countries. Class I evidence with regard to patient satisfaction and safety of burr-hole cover placement is likely to have an impact on future cSDH management
    corecore