483 research outputs found
Mott insulators in an optical lattice with high filling factors
We discuss the superfluid to Mott insulator transition of an atomic Bose gas
in an optical lattice with high filling factors. We show that also in this
multi-band situation, the long-wavelength physics is described by a single-band
Bose-Hubbard model. We determine the many-body renormalization of the tunneling
and interaction parameters in the effective Bose-Hubbard Hamiltonian, and
consider the resulting model at nonzero temperatures. We show that in
particular for a one or two-dimensional optical lattice, the Mott insulator
phase is more difficult to realize than anticipated previously.Comment: 5 pages, 3 figures, title changed, major restructuring, resubmitted
to PR
On the Role of Penning Ionization in Photoassociation Spectroscopy
We study the role of Penning ionization on the photoassociation spectra of
He(^3S)-He(^3S). The experimental setup is discussed and experimental results
for different intensities of the probe laser are shown. For modelling the
experimental results we consider coupled-channel calculations of the crossing
of the ground state with the excited state at the Condon point. The
coupled-channel calculations are first applied to model systems, where we
consider two coupled channels without ionization, two coupled channels with
ionization, and three coupled channels, for which only one of the excited
states is ionizing. Finally, coupled-channel calculations are applied to
photoassociation of He(^3S)-He(^3S) and good agreement is obtained between the
model and the experimental results.Comment: 14 pages, 18 figures, submitted to the special issue on Cold
Molecules of J. Phys.
Cross-talk between signaling pathways leading to defense against pathogens and insects
In nature, plants interact with a wide range of organisms, some of which
are harmful (e.g. pathogens, herbivorous insects), while others are beneficial
(e.g. growth-promoting rhizobacteria, mycorrhizal fungi, and predatory
enemies of herbivores). During the evolutionary arms race between plants
and their attackers, primary and secondary immune responses evolved to
recognize common or highly specialized features of microbial pathogens
(Chisholm et al., 2006), resulting in sophisticated mechanisms of defense
Large area photonic crystal cavities: A local density approach
Large area photonic crystal cavities are devices of interest for photovoltaics, optoelectronics, and solid-state lighting. However, depending on their dimensions they pose a large computational challenge. Here, we use a local density approach to avoid direct simulation of the device.We capture the effect of both ideal and distorted photonic crystals in an effective mass and an effective potential. We use these to map the problem of calculating the electromagnetic field modes to solving a simple time-independent Schrödinger equation. We show that, in the case that the hole radius varies quadratically as a function of position, the eigenmodes of the photonic crystals can be described by the corresponding eigenmodes of the quantum harmonic oscillator with typical agreements well above 90%
Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler
We demonstrate that two coupled photonic-crystal waveguides can route two subsequently arriving light pulses to different output ports even though the pulses are only 3 ps apart. This rerouting of light is due to an ultrafast shift in the transmittance spectrum triggered by the generation of electrons and holes in the Si base material by a femtosecond laser pulse. The use of slow-light modes allows for a coupler length of only 5.2 μm. Since these modes are not directly involved, the 3 ps dead time is solely determined by the duration of the input pulse rather than its transit time through the device.We acknowledge funding through the EU FP6-FET
“SPLASH” project. This work is also part of the research
program of FOM, which is financially supported by the
NWO
- …