2,972 research outputs found

    First Results on the Removal of Emerging Micropollutants from Municipal Centrate by Microalgae

    Get PDF
    The results of a first campaign of sampling and analyses of emerging micropollutants in the influent (municipal centrate) and effluent of a pilot MBP raceway are reported. The algal population was chiefly made of Chlorella spp. and the pilot worked satisfactorily for the removal of nitrogen. 14 emerging micropollutants were analysed. Average removal efficiencies exceeding 80 % were observed for diclofenac, lamotrigine, ketoprofene, clarithromycin. For such compounds the variability of removal efficiency was also reduced, with respect to the other tested molecules, and was particularly low for diclofenac and lamotrigine. Removal efficiencies over 50 % were measured for azithromycin, metoprolol and irbesartan but with strong variability. Lower removal efficiencies were observed for amisulpride and 5-methylbenzotriazole, while for the remaining compounds the concentrations in the effluent were higher than in the influent

    Chronic Central Serous Chorioretinopathy with Pigment Epithelium Detachment Treated with Sildenafil: A Case Report

    Get PDF
    Central serous chorioretinopathy (CSCR) is a retinal disease that may be complicated by the development of serous retinal pigment epithelial detachment (PED). The exact molecular mechanisms of CSCR have remained uncertain as well as there is no effective medical therapy. Herein, we describe a case of a 43-year-old male suffering from chronic CSCR with PED and visual acuity reduction (20/40) that showed improvement in visual acuity (20/25) and metamorphopsia 2 weeks after daily intake of 20 mg sildenafil tablets. Optical coherence tomography (OCT) scan showed resolution of PED with residual degeneration of the photoreceptor inner and outer segment layer and retinal pigmented epithelium. The patient continued treatment with sildenafil 20 mg for 2 months. Six months after the discontinuation of therapy, visual acuity was maintained, with absence of PED at OCT. Our case supports the hypothesis that phosphodiesterase type 5 (PDE-5) inhibitors may be an alternative in the treatment of patients with CSCR, alone or combined with other medications

    Spinal cord atrophy in a primary progressive multiple sclerosis trial: Improved sample size using GBSI

    Get PDF
    Background: We aimed to evaluate the implications for clinical trial design of the generalised boundary-shift integral (GBSI) for spinal cord atrophy measurement. / Methods: We included 220 primary-progressive multiple sclerosis patients from a phase 2 clinical trial, with baseline and week-48 3DT1-weighted MRI of the brain and spinal cord (1 × 1 × 1 mm3), acquired separately. We obtained segmentation-based cross-sectional spinal cord area (CSA) at C1-2 (from both brain and spinal cord MRI) and C2-5 levels (from spinal cord MRI) using DeepSeg, and, then, we computed corresponding GBSI. / Results: Depending on the spinal cord segment, we included 67.4–98.1% patients for CSA measurements, and 66.9–84.2% for GBSI. Spinal cord atrophy measurements obtained with GBSI had lower measurement variability, than corresponding CSA. Looking at the image noise floor, the lowest median standard deviation of the MRI signal within the cerebrospinal fluid surrounding the spinal cord was found on brain MRI at the C1-2 level. Spinal cord atrophy derived from brain MRI was related to the corresponding measures from dedicated spinal cord MRI, more strongly for GBSI than CSA. Spinal cord atrophy measurements using GBSI, but not CSA, were associated with upper and lower limb motor progression. / Discussion: Notwithstanding the reduced measurement variability, the clinical correlates, and the possibility of using brain acquisitions, spinal cord atrophy using GBSI should remain a secondary outcome measure in MS studies, until further advancements increase the quality of acquisition and reliability of processing

    Longitudinal tear protein changes correlate with ocular chronic gvhd development in allogeneic hematopoietic stem cell transplant patients

    Get PDF
    Ocular graft-versus-host disease (oGVHD) is a manifestation of chronic GVHD, frequently occurring in patients after allogeneic hematopoietic stem cell transplant (HSCT). We analyzed tear protein changes before and after allogeneic HSCT, and correlated their levels with the oGVHD development. This retrospective study included 102 patients, and data were recorded before the conditioning treatment, and after 3 to 6 months postoperatively. Tear protein analysis was performed with the Agilent-2100 Bioanalyzer on individual tears sampled by aspiration. Total protein (TP), Lysozyme-C (LYS-C), Lactoferrin (LACTO), Lipocalin-1 (LIPOC-1), Transferrin (TRANSF), Albumin (ALB), and Zinc-alpha-2-glycoprotein (ZAG-2) levels were retrieved and statistically analyzed. Following HSCT forty-three patients developed oGVHD. TP, LACTO, LYS-C, and ZAG-2 levels significantly decreased post-HSCT as compared to pre HSCT levels. In univariate analysis, TP, LACTO, and ZAG-2 decrease was associated with an increased development of oGVHD (OR = 4.49; 95% CI, 1.9 to 10.5; p < 0.001; OR = 3.08; 95% CI 1.3 to 7.6; p = 0.01; OR = 11.1; 95% CI 2.7 to 46.6; p < 0.001, respectively). TRANSF post-HSCT levels significantly increased (OR 15.7; 95% CI, 4.1 to 52.2; p = 0.0001). No pre-post-HSCT changes were shown in ALB and LIPOC-1 levels. Data suggest that TP content, LACTO, TRANSF, and ZAG-2 pre-post changes might be significant predictors of oGVHD development

    The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities

    Get PDF
    We study the long term evolution of the distance between two Keplerian confocal trajectories in the framework of the averaged restricted 3-body problem. The bodies may represent the Sun, a solar system planet and an asteroid. The secular evolution of the orbital elements of the asteroid is computed by averaging the equations of motion over the mean anomalies of the asteroid and the planet. When an orbit crossing with the planet occurs the averaged equations become singular. However, it is possible to define piecewise differentiable solutions by extending the averaged vector field beyond the singularity from both sides of the orbit crossing set. In this paper we improve the previous results, concerning in particular the singularity extraction technique, and show that the extended vector fields are Lipschitz-continuous. Moreover, we consider the distance between the Keplerian trajectories of the small body and of the planet. Apart from exceptional cases, we can select a sign for this distance so that it becomes an analytic map of the orbital elements near to crossing configurations. We prove that the evolution of the 'signed' distance along the averaged vector field is more regular than that of the elements in a neighborhood of crossing times. A comparison between averaged and non-averaged evolutions and an application of these results are shown using orbits of near-Earth asteroids.Comment: 29 pages, 8 figure

    Dynamical Model for the Zodiacal Cloud and Sporadic Meteors

    Full text link
    The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving to the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer (>10^5 yr at 1 AU) than postulated in the standard collisional models (10^4 yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite (IRAS) to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5)x10^11 km^2 and 4x10^19 g, respectively, in a good agreement with previous studies. The mass input required to keep the Zodiacal Cloud (ZC) in a steady state is estimated to be 10^4-10^5 kg/s. The input is up to 10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes, and need to be supplied at a faster rate

    Neutron Stars: Formed, Spun and Kicked

    Full text link
    One of the primary goals when studying stellar systems with neutron stars has been to reveal the physical properties of progenitors and understand how neutron star spins and birth kicks are determined. Over the years a consensus understanding had been developed, but recently some of the basic elements of this understanding are being challenged by current observations of some binary systems and their theoretical interpretation. In what follows we review such recent developments and highlight how they are interconnected; we particularly emphasize some of the assumptions and caveats of theoretical interpretations and examine their validity (e.g., in connection to the unknown radial velocities of pulsars or the nuances of multi-dimensional statistical analysis). The emerging picture does not erase our earlier understanding; instead it broadens it as it reveals additional pathways for neutron star formation and evolution: neutron stars probably form at the end of both core collapse of Fe cores of massive stars and electron-capture supernovae of ONeMg cores of lower-mass stars; birth kicks are required to be high (well in excess of 100 km/s) for some neutron stars and low (< 100 km/s) for others depending on the formation process; and spin up may occur not just through Roche-lobe overflow but also through wind accretion or phases of hypercritical accretion during common envelope evolution.Comment: 9 pages,4 figures, proceedings paper for 40 Years of Pulsars Conferenc

    Novel bicistronic lentiviral vectors correct beta-Hexosaminidase deficiency in neural and hematopoietic stem cells and progeny: implications for in vivo and ex vivo gene therapy of GM2 gangliosidosis

    Get PDF
    The favorable outcome of in vivo and ex vivo gene therapy approaches in several Lysosomal Storage Diseases suggests that these treatment strategies might equally benefit GM2 gangliosidosis. Tay-Sachs and Sandhoff disease (the main forms of GM2 gangliosidosis) result from mutations in either the HEXA or HERB genes encoding, respectively, the alpha- or beta-subunits of the lysosomal beta-Hexosaminidase enzyme. In physiological conditions, alpha- and beta-subunits combine to generate beta-Hexosaminidase A (HexA, alpha beta) and beta-Hexosaminidase B (HexB, 1313). A major impairment to establishing in vivo or ex vivo gene therapy for GM2 gangliosidosis is the need to synthesize the alpha- and beta-subunits at high levels and with the correct stoichiometric ratio, and to safely deliver the therapeutic products to all affected tissues/organs. Here, we report the generation and in vitro validation of novel bicistronic lentiviral vectors (LVs) encoding for both the murine and human codon optimized Hexa and Hex!) genes. We show that these LVs drive the safe and coordinate expression of the alpha- and beta-subunits, leading to supranormal levels of beta-Hexosaminidase activity with prevalent formation of a functional HexA in SD murine neurons and glia, murine bone marrow-derived hematopoietic stem/progenitor cells (HSPCs), and human SD fibroblasts. The restoration/overexpression of beta-Hexosaminidase leads to the reduction of intracellular GM2 ganglioside storage in transduced and in cross-corrected SD murine neural progeny, indicating that the transgenic enzyme is secreted and functional. Importantly, bicistronic LVs safely and efficiently transduce human neurons/glia and CD34 + HSPCs, which are target and effector cells, respectively, in prospective in vivo and ex vivo GT approaches. We anticipate that these bicistronic LVs may overcome the current requirement of two vectors co-delivering the alpha- or beta-subunits genes. Careful assessment of the safety and therapeutic potential of these bicistronic LVs in the SD murine model will pave the way to the clinical development of LV-based gene therapy for GM2 gangliosidosis

    Tidally-Induced Apsidal Precession in Double White Dwarfs: a new mass measurement tool with LISA

    Full text link
    Galactic interacting double white dwarfs (DWD) are guaranteed gravitational wave (GW) sources for the GW detector LISA, with more than 10^4 binaries expected to be detected over the mission's lifetime. Part of this population is expected to be eccentric, and here we investigate the potential for constraining the white dwarf (WD) properties through apsidal precession in these binaries. We analyze the tidal, rotational, and general relativistic contributions to apsidal precession by using detailed He WD models, where the evolution of the star's interior is followed throughout the cooling phase. In agreement with previous studies of zero-temperature WDs, we find that apsidal precession in eccentric DWDs can lead to a detectable shift in the emitted GW signal when binaries with cool (old) components are considered. This shift increases significantly for hot (young) WDs. We find that apsidal motion in hot (cool) DWDs is dominated by tides at orbital frequencies above ~10^{-4}Hz (10^{- 3}$Hz). The analysis of apsidal precession in these sources while ignoring the tidal component would lead to an extreme bias in the mass determination, and could lead us to misidentify WDs as neutron stars or black holes. We use the detailed WD models to show that for older, cold WDs, there is a unique relationship that ties the radius and apsidal precession constant to the WD masses, therefore allowing tides to be used as a tool to constrain the source masses.Comment: 23 pages, 7 figures, revised to match accepted ApJ versio
    • …
    corecore