2,805 research outputs found

    From Organic Wastes and Hydrocarbons Pollutants to Polyhydroxyalkanoates: Bioconversion by Terrestrial and Marine Bacteria

    Get PDF
    The use of fossil-based plastics has become unsustainable because of the polluting production processes, difficulties for waste management sectors, and high environmental impact. Polyhydroxyalkanoates (PHA) are bio-based biodegradable polymers derived from renewable resources and synthesized by bacteria as intracellular energy and carbon storage materials under nutrients or oxygen limitation and through the optimization of cultivation conditions with both pure and mixed culture systems. The PHA properties are affected by the same principles of oil-derived polyolefins, with a broad range of compositions, due to the incorporation of different monomers into the polymer matrix. As a consequence, the properties of such materials are represented by a broad range depending on tunable PHA composition. Producing waste-derived PHA is technically feasible with mixed microbial cultures (MMC), since no sterilization is required; this technology may represent a solution for waste treatment and valorization, and it has recently been developed at the pilot scale level with different process configurations where aerobic microorganisms are usually subjected to a dynamic feeding regime for their selection and to a high organic load for the intracellular accumulation of PHA. In this review, we report on studies on terrestrial and marine bacteria PHA-producers. The available knowledge on PHA production from the use of different kinds of organic wastes, and otherwise, petroleum-polluted natural matrices coupling bioremediation treatment has been explored. The advancements in these areas have been significant; they generally concern the terrestrial environment, where pilot and industrial processes are already established. Recently, marine bacteria have also offered interesting perspectives due to their advantageous effects on production practices, which they can relieve several constraints. Studies on the use of hydrocarbons as carbon sources offer evidence for the feasibility of the bioconversion of fossil-derived plastics into bioplastics

    Listening to the sound of dark sector interactions with gravitational wave standard sirens

    Full text link
    We consider two stable Interacting Dark Matter -- Dark Energy models and confront them against current Cosmic Microwave Background data from the \textit{Planck} satellite. We then generate luminosity distance measurements from O(103){\cal O}(10^3) mock Gravitational Wave events matching the expected sensitivity of the proposed Einstein Telescope. We use these to forecast how the addition of Gravitational Wave standard sirens data can improve current limits on the Dark Matter -- Dark Energy coupling strength (ξ\xi). We find that the addition of Gravitational Waves data can reduce the current uncertainty by a factor of 55. Moreover, if the underlying cosmological model truly features Dark Matter -- Dark Energy interactions with a value of ξ\xi within the currently allowed 1σ1\sigma upper limit, the addition of Gravitational Wave data would help disentangle such an interaction from the standard case of no interaction at a significance of more than 3σ3\sigma.Comment: 16 pages, 3 tables, 4 figures; version published in JCA

    Specific Microbial Communities Are Selected in Minimally-Processed Fruit and Vegetables according to the Type of Product

    Get PDF
    Fruits and vegetables (F&V) products are recommended for the daily diet due to their low caloric content, high amount of vitamins, minerals and fiber. Furthermore, these foods are a source of various phytochemical compounds, such as polyphenols, flavonoids and sterols, exerting antioxidant activity. Despite the benefits derived from eating raw F&V, the quality and safety of these products may represent a source of concern, since they can be quickly spoiled and have a very short shelf-life. Moreover, they may be a vehicle of pathogenic microorganisms. This study aims to evaluate the bacterial and fungal populations in F&V products (i.e., iceberg lettuces, arugula, spinaches, fennels, tomatoes and pears) by using culture-dependent microbiological analysis and high-throughput sequencing (HTS), in order to decipher the microbial populations that characterize minimally-processed F&V. Our results show that F&V harbor diverse and product-specific bacterial and fungal communities, with vegetables leaf morphology and type of edible fraction of fruits exerting the highest influence. In addition, we observed that several alterative (e.g., Pseudomonas and Aspergillus) and potentially pathogenic taxa (such as Staphylococcus and Cladosporium) are present, thus emphasizing the need for novel product-specific strategies to control the microbial composition of F&V and extend their shelf-life

    Exact Correlation Functions in the Brownian Loop Soup

    Full text link
    We compute analytically and in closed form the four-point correlation function in the plane, and the two-point correlation function in the upper half-plane, of layering vertex operators in the two dimensional conformally invariant system known as the Brownian Loop Soup. These correlation functions depend on multiple continuous parameters: the insertion points of the operators, the intensity of the soup, and the charges of the operators. In the case of the four-point function there is non-trivial dependence on five continuous parameters: the cross-ratio, the intensity, and three real charges. The four-point function is crossing symmetric. We analyze its conformal block expansion and discover a previously unknown set of new conformal primary operators.Comment: 28 pages, 2 figures; Eq. (20) correcte

    Ethylic esters as green solvents for the extraction of intracellular polyhydroxyalkanoates produced by mixed microbial culture

    Get PDF
    Volatile fatty acids obtained from the fermentation of the organic fraction of municipal solid waste can be used as raw materials for non-toxic ethyl ester (EE) synthesis as well as feedstock for the production of polyhydroxyalkanoates (PHAs). Taking advantage of the concept of an integrated process of a bio-refinery, in the present paper, a systematic investigation on the extraction of intracellular poly(3-hydroxybutyrate-co-3-hydroxyvalerate), produced by mixed microbial culture by using EEs was reported. Among the tested EEs, ethyl acetate (EA) was the best solvent, dissolving the copolymer at the lowest temperature. Then, extraction experiments were carried out by EA at different temperatures on two biomass samples containing PHAs with different average molecular weights. The parallel characterization of the extracted and non-extracted PHAs evidenced that at the lower temperature (100â—¦C) EA solubilizes preferentially the polymer fractions richer in 3HV comonomers and with the lower molecular weight. By increasing the extraction temperature from 100â—¦C to 125â—¦C, an increase of recovery from about 50 to 80 wt% and a molecular weight reduction from 48% to 65% was observed. The results highlighted that the extracted polymer purity is always above 90 wt% and that it is possible to choose the proper extraction condition to maximize the recovery yield at the expense of polymer fractionation and degradation at high temperatures or use milder conditions to maintain the original properties of a polymer
    • …
    corecore