20 research outputs found

    Investigation of the effective permeability of vuggy or fractured porous media from a Darcy-Brinkman approach

    No full text
    In this paper, the macroscopic representation of one-phase incompressible flow in fractured and cavity (or vuggy) porous media is studied from theoretical and numerical points of view. A single-domain (or equivalently a Darcy-Brinkman) type of approach is followed to describe the momentum transport at Darcy scale where the fracture or cavity region and porous matrix region are well identified. The Darcy scale model is upscaled yielding a macroscopic momentum equation operating on the equivalent homogeneous medium. Numerical solution to the associated closure problem is proposed in order to compute the effective permeability. Numerical results on some model fractured and cavity media are discussed and compared to some analytical results

    Fuel Pyrolysis through Porous Media: Coke Formation and Coupled effect on Permeability

    No full text
    International audienceThe development of hypersonic vehicles (up to Mach 10) leads to an important heating of the whole structure. The fuel is thus used as a coolant. It presents an endothermic decomposition with possible coke formation. Its additional permeation through the porous structure involves internal convection. This implies very complex phenomena (heat and mass transfers with chemistry). In this paper, the n-dodecane pyrolysis is studied through stainless steel porous medium up to 820 K and 35 bar (supercritical state). The longitudinal profiles of chemical compositions inside the porous medium are given thanks to a specific sampling technique with off-line Gas Chromatograph and Mass Spectrometer analysis. By comparison with previous experiments under plug flow reactor, the conversion of dodecane is higher for the present experimental configuration. The pyrolysis produces preferentially light gaseous species, which results in a higher gasification rate for a similar pyrolysis rate. The effects of the residence time and of the contact surface area are demonstrated. The transient changes of Darcy's permeability are related to the coke formation thanks to previous experimental relationship with methane production. A time shift is observed between coke chemistry and permeability change. This work is quite unique to the author's knowledge because of the complex chemistry of heavy hydrocarbon fuels pyrolysis, particularly in porous medium
    corecore