104 research outputs found

    Laser-driven high-power X- and gamma-ray ultra-short pulse source

    Full text link
    A novel ultra-bright high-intensity source of X-ray and gamma radiation is suggested. It is based on the double Doppler effect, where a relativistic flying mirror reflects a counter-propagating electromagnetic radiation causing its frequency multiplication and intensification, and on the inverse double Doppler effect, where the mirror acquires energy from an ultra-intense co-propagating electromagnetic wave. The role of the flying mirror is played by a high-density thin plasma slab accelerating in the radiation pressure dominant regime. Frequencies of high harmonics generated at the flying mirror by a relativistically strong counter-propagating radiation undergo multiplication with the same factor as the fundamental frequency of the reflected radiation, approximately equal to the quadruple of the square of the mirror Lorentz factor.Comment: 8 pages, 5 figures. Presented at the ELI Workshop and School on "Fundamental Physics with Ultra-High Fields" 29.09.-02.10.2008, in Frauenworth Monastery, Bavaria, German

    Potentially Missing Physics of the Early Universe: Nonlinear Vacuum Polarization in Intense Blackbody Radiation

    Get PDF
    The standard Big Bang universe model is mainly based on linear interactions, except during exotic periods such as inflation. The purpose of the present proposal is to explore the effects, if any, of vacuum polarization in the very high energy density environment of the early universe. These conditions can be found today in astrophysical settings and may also be emulated in the laboratory using high intensity advanced lasers. Shortly after the Big Bang, there once existed a time when the energy density of the universe corresponded to a temperature in the range 10{sup 8} - 10{sup 9} K, sufficient to cause vacuum polarization effects. During this period, the nonlinear vacuum polarization may have had significant modifications on the propagation of radiation. Thus the thermal spectrum of the early universe may have been starkly non-Planckian. Measurements of the cosmic microwave background today show a spectrum relatively close to an ideal blackbody. Could the early universe have shown spectral deviations due to nonlinear vacuum effects? If so, is it possible to detect traces of those relic photons in the universe today? Found in galactic environments, compact objects such as blazars and magnetars can possess astronomically large energy densities that far exceed anything that can be created in the laboratory. Their field strengths are known to reach energy levels comparable to or surpassing the energy corresponding to the Schwinger critical field E {approx} 10{sup 18} V/m. Nonlinear vacuum effects become prominent under these conditions and have garnered much interest from the astronomical and theoretical physics communities. The effects of a nonlinear vacuum may be of crucial importance for our understanding of these objects. At energies of the order of the electron rest mass, the most important interactions are described by quantum electrodynamics (QED). It is predicted that nonlinear photon-photon interactions will occur at energies approaching the Schwinger critical field. The basic process is the appearance of vacuum polarization, or the creation of the virtual electron-positron pair by vacuum fluctuations, as shown in Fig.1. These quantum processes can be described by an effective field theory for the electromagnetic field where the effects of virtual processes appear as small corrections. First derived by Heisenberg and Euler, this theory describes the corrections to classical electromagnetic theory due to photon-photon scattering [1]. An overview of nonlinear vacuum effects as formulated through the Heisenberg-Euler Lagrangian can be found in [2]

    Experimental observation of nonlinear Thomson scattering

    Get PDF
    A century ago, J. J. Thomson showed that the scattering of low-intensity light by electrons was a linear process (i.e., the scattered light frequency was identical to that of the incident light) and that light's magnetic field played no role. Today, with the recent invention of ultra-high-peak-power lasers it is now possible to create a sufficient photon density to study Thomson scattering in the relativistic regime. With increasing light intensity, electrons quiver during the scattering process with increasing velocity, approaching the speed of light when the laser intensity approaches 10^18 W/cm^2. In this limit, the effect of light's magnetic field on electron motion should become comparable to that of its electric field, and the electron mass should increase because of the relativistic correction. Consequently, electrons in such high fields are predicted to quiver nonlinearly, moving in figure-eight patterns, rather than in straight lines, and thus to radiate photons at harmonics of the frequency of the incident laser light, with each harmonic having its own unique angular distribution. In this letter, we report the first ever direct experimental confirmation of these predictions, a topic that has previously been referred to as nonlinear Thomson scattering. Extension of these results to coherent relativistic harmonic generation may eventually lead to novel table-top x-ray sources.Comment: including 4 figure

    Radiation Pressure Dominate Regime of Relativistic Ion Acceleration

    Full text link
    The electromagnetic radiation pressure becomes dominant in the interaction of the ultra-intense electromagnetic wave with a solid material, thus the wave energy can be transformed efficiently into the energy of ions representing the material and the high density ultra-short relativistic ion beam is generated. This regime can be seen even with present-day technology, when an exawatt laser will be built. As an application, we suggest the laser-driven heavy ion collider.Comment: 10 pages, 4 figure

    The intensity dependent mass shift: existence, universality and detection

    Full text link
    The electron mass shift in a laser field has long remained an elusive concept. We show that the mass shift can exist in pulses but that it is neither unique nor universal: it can be reduced by pulse shaping. We show also that the detection of mass shift effects in laser-particle scattering experiments is feasible with current technology, even allowing for the transverse structure of realistic beams.Comment: 5 pages, 4 figures. V2: references added, introduction expande

    Properties of electrons scattered on a strong plane electromagnetic wave with a linear polarization: classical treatment

    Get PDF
    The relations among the components of the exit momenta of ultrarelativistic electrons scattered on a strong electromagnetic wave of a low (optical) frequency and linear polarization are established using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of the electrons traversed the electromagnetic wave depend weakly on the initial values of the momenta. These electrons are mostly scattered at the small angles to the direction of propagation of the electromagnetic wave. The maximum Lorentz factor of the electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momenta. The momentum component parallel to the electric field strength vector of the electromagnetic wave is determined only by the diameter of the laser beam measured in the units of the classical electron radius. As for the reflected electrons, they for the most part lose the energy, but remain relativistic. There is a reflection law for these electrons that relates the incident and the reflection angles and is independent of any parameters.Comment: 12 pp, 3 fig

    A millimeter wave FEL driven by a photocathode rf linac

    Get PDF
    Abstract We present the design of a millimeter wave FEL based on the UCLA photocathode rf linac. The linac energy can be varied between 5 and 18 MeV. The electron pulse duration is 2 ps FWHM, with a peak current exceeding 150 A. The FEL is designed to operate in the high gain Compton regime, controlling the slippage with the propagating radiation in a waveguide. The design will permit the exploration of the basic FEL physics in this regime, including the exploration of saturation and lethargy in the superradiant and steady state regime
    corecore