269 research outputs found

    How branching can change the conductance of ballistic semiconductor devices

    Full text link
    We demonstrate that branching of the electron flow in semiconductor nanostructures can strongly affect macroscopic transport quantities and can significantly change their dependence on external parameters compared to the ideal ballistic case even when the system size is much smaller than the mean free path. In a corner-shaped ballistic device based on a GaAs/AlGaAs two-dimensional electron gas we observe a splitting of the commensurability peaks in the magnetoresistance curve. We show that a model which includes a random disorder potential of the two-dimensional electron gas can account for the random splitting of the peaks that result from the collimation of the electron beam. The shape of the splitting depends on the particular realization of the disorder potential. At the same time magnetic focusing peaks are largely unaffected by the disorder potential.Comment: accepted for publication in Phys. Rev.

    Effect of electron-electron scattering on spin dephasing in a high-mobility low-density twodimensional electron gas

    Full text link
    Utilizing time-resolved Kerr rotation techniques, we have investigated the spin dynamics of a high mobility, low density two dimensional electron gas in a GaAs/Al0:35Ga0:65As heterostructure in dependence on temperature from 1.5 K to 30 K. It is found that the spin relaxation/dephasing time under a magnetic field of 0.5 T exhibits a maximum of 3.12 ns around 14 K, superimposed on an increasing background with rising temperature. The appearance of the maximum is ascribed to that at the temperature where the crossover from the degenerate to the nondegenerate regime takes place, electron-electron Coulomb scattering becomes strongest, and thus inhomogeneous precession broadening due to D'yakonov-Perel'(DP) mechanism becomes weakest. These results agree with the recent theoretical predictions [Zhou et al., PRB 75, 045305 (2007)], verifying the importance of electron-electron Coulomb scattering to electron spin relaxation/dephasing.Comment: 4 pages, 2 figure

    Circular polarization dependent study of the microwave photoconductivity in a two-dimensional electron system

    Full text link
    The polarization dependence of the low field microwave photoconductivity and absorption of a two-dimensional electron system has been investigated in a quasi-optical setup in which linear and any circular polarization can be produced in-situ. The microwave induced resistance oscillations and the zero resistance regions are notedly immune to the sense of circular polarization. This observation is discrepant with a number of proposed theories. Deviations only occur near the cyclotron resonance absorption where an unprecedented large resistance response is observed.Comment: 5 pages, 3 figure

    Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards

    Get PDF
    Myeloid-derived suppressor cells (MDSCs) have emerged as major regulators of immune responses in cancer and other pathological conditions. In recent years, ample evidence supports key contributions of MDSC to tumour progression through both immune-mediated mechanisms and those not directly associated with immune suppression. MDSC are the subject of intensive research with >500 papers published in 2015 alone. However, the phenotypic, morphological and functional heterogeneity of these cells generates confusion in investigation and analysis of their roles in inflammatory responses. The purpose of this communication is to suggest characterization standards in the burgeoning field of MDSC research

    Anisotropy and periodicity in the density distribution of electrons in a quantum-well

    Full text link
    We use low temperature near-field optical spectroscopy to image the electron density distribution in the plane of a high mobility GaAs quantum well. We find that the electrons are not randomly distributed in the plane, but rather form narrow stripes (width smaller than 150 nm) of higher electron density. The stripes are oriented along the [1-10 ] crystal direction, and are arranged in a quasi-periodic structure. We show that elongated structural mounds, which are intrinsic to molecular beam epitaxy, are responsible for the creation of this electron density texture.Comment: 10 pages, 3 figure

    Quasiclassical negative magnetoresistance of a 2D electron gas: interplay of strong scatterers and smooth disorder

    Get PDF
    We study the quasiclassical magnetotransport of non-interacting fermions in two dimensions moving in a random array of strong scatterers (antidots, impurities or defects) on the background of a smooth random potential. We demonstrate that the combination of the two types of disorder induces a novel mechanism leading to a strong negative magnetoresistance, followed by the saturation of the magnetoresistivity ρxx(B)\rho_{xx}(B) at a value determined solely by the smooth disorder. Experimental relevance to the transport in semiconductor heterostructures is discussed.Comment: 4 pages, 2 figure

    Quasiclassical magnetotransport in a random array of antidots

    Get PDF
    We study theoretically the magnetoresistance ρxx(B)\rho_{xx}(B) of a two-dimensional electron gas scattered by a random ensemble of impenetrable discs in the presence of a long-range correlated random potential. We believe that this model describes a high-mobility semiconductor heterostructure with a random array of antidots. We show that the interplay of scattering by the two types of disorder generates new behavior of ρxx(B)\rho_{xx}(B) which is absent for only one kind of disorder. We demonstrate that even a weak long-range disorder becomes important with increasing BB. In particular, although ρxx(B)\rho_{xx}(B) vanishes in the limit of large BB when only one type of disorder is present, we show that it keeps growing with increasing BB in the antidot array in the presence of smooth disorder. The reversal of the behavior of ρxx(B)\rho_{xx}(B) is due to a mutual destruction of the quasiclassical localization induced by a strong magnetic field: specifically, the adiabatic localization in the long-range Gaussian disorder is washed out by the scattering on hard discs, whereas the adiabatic drift and related percolation of cyclotron orbits destroys the localization in the dilute system of hard discs. For intermediate magnetic fields in a dilute antidot array, we show the existence of a strong negative magnetoresistance, which leads to a nonmonotonic dependence of ρxx(B)\rho_{xx}(B).Comment: 21 pages, 13 figure

    Nonlinear effects in microwave photoconductivity of two-dimensional electron systems

    Full text link
    We present a model for microwave photoconductivity of two-dimensional electron systems in a magnetic field which describes the effects of strong microwave and steady-state electric fields. Using this model, we derive an analytical formula for the photoconductivity associated with photon- and multi-photon-assisted impurity scattering as a function of the frequency and power of microwave radiation. According to the developed model, the microwave conductivity is an oscillatory function of the frequency of microwave radiation and the cyclotron frequency which turns zero at the cyclotron resonance and its harmonics. It exhibits maxima and minima (with absolute negative conductivity) at the microwave frequencies somewhat different from the resonant frequencies. The calculated power dependence of the amplitude of the microwave photoconductivity oscillations exhibits pronounced sublinear behavior similar to a logarithmic function. The height of the microwave photoconductivity maxima and the depth of its minima are nonmonotonic functions of the electric field. It is pointed to the possibility of a strong widening of the maxima and minima due to a strong sensitivity of their parameters on the electric field and the presence of strong long-range electric-field fluctuations. The obtained dependences are consistent with the results of the experimental observations.Comment: 9 pages, 6 figures Labeling of the curves in Fig.3 correcte
    • 

    corecore