228 research outputs found

    Plans for the LIGO-TAMA Joint Search for Gravitational Wave Bursts

    Full text link
    We describe the plans for a joint search for unmodelled gravitational wave bursts being carried out by the LIGO and TAMA collaborations using data collected during February-April 2003. We take a conservative approach to detection, requiring candidate gravitational wave bursts to be seen in coincidence by all four interferometers. We focus on some of the complications of performing this coincidence analysis, in particular the effects of the different alignments and noise spectra of the interferometers.Comment: Proceedings of the 8th Gravitational Wave Data Analysis Workshop, Milwaukee, WI, USA. 10 pages, 3 figures, documentclass ``iopart'

    Galactic-disk enhancement of cosmic rays at E > 1012eV

    Get PDF
    We observed an enhancement of cosmic rays from the Vela region with SAS array at Mt. Chacaltaya in Bolivia. It is not possible to conclude that this enhancement is caused by primary gamma-rays, since the observed events not limited with the less muons in the air showers show the same enhancement. In order to confirm this result with improved statistics and to investigate the energy dependence of this enhancement, we have installed a new array, called MAS array. All the data with much higher statistics show the enhancement along the Whole galactic disk

    On-orbit Operations and Offline Data Processing of CALET onboard the ISS

    Get PDF
    The CALorimetric Electron Telescope (CALET), launched for installation on the International Space Station (ISS) in August, 2015, has been accumulating scientific data since October, 2015. CALET is intended to perform long-duration observations of high-energy cosmic rays onboard the ISS. CALET directly measures the cosmic-ray electron spectrum in the energy range of 1 GeV to 20 TeV with a 2% energy resolution above 30 GeV. In addition, the instrument can measure the spectrum of gamma rays well into the TeV range, and the spectra of protons and nuclei up to a PeV. In order to operate the CALET onboard ISS, JAXA Ground Support Equipment (JAXA-GSE) and the Waseda CALET Operations Center (WCOC) have been established. Scientific operations using CALET are planned at WCOC, taking into account orbital variations of geomagnetic rigidity cutoff. Scheduled command sequences are used to control the CALET observation modes on orbit. Calibration data acquisition by, for example, recording pedestal and penetrating particle events, a low-energy electron trigger mode operating at high geomagnetic latitude, a low-energy gamma-ray trigger mode operating at low geomagnetic latitude, and an ultra heavy trigger mode, are scheduled around the ISS orbit while maintaining maximum exposure to high-energy electrons and other high-energy shower events by always having the high-energy trigger mode active. The WCOC also prepares and distributes CALET flight data to collaborators in Italy and the United States. As of August 31, 2017, the total observation time is 689 days with a live time fraction of the total time of approximately 84%. Nearly 450 million events are collected with a high-energy (E>10 GeV) trigger. By combining all operation modes with the excellent-quality on-orbit data collected thus far, it is expected that a five-year observation period will provide a wealth of new and interesting results.Comment: 11 pages, 7 figures, published online 27 February 201

    Search for GeV Gamma-ray Counterparts of Gravitational Wave Events by CALET

    Get PDF
    We present results on searches for gamma-ray counterparts of the LIGO/Virgo gravitational-wave events using CALorimetric Electron Telescope ({\sl CALET}) observations. The main instrument of {\sl CALET}, CALorimeter (CAL), observes gamma-rays from 1\sim1 GeV up to 10 TeV with a field of view of nearly 2 sr. In addition, the {\sl CALET} gamma-ray burst monitor (CGBM) views \sim3 sr and 2π\sim2\pi sr of the sky in the 7 keV -- 1 MeV and the 40 keV -- 20 MeV bands, respectively, by using two different crystal scintillators. The {\sl CALET} observations on the International Space Station started in October 2015, and here we report analyses of events associated with the following gravitational wave events: GW151226, GW170104, GW170608, GW170814 and GW170817. Although only upper limits on gamma-ray emission are obtained, they correspond to a luminosity of 1049105310^{49}\sim10^{53} erg s1^{-1} in the GeV energy band depending on the distance and the assumed time duration of each event, which is approximately the order of luminosity of typical short gamma-ray bursts. This implies there will be a favorable opportunity to detect high-energy gamma-ray emission in further observations if additional gravitational wave events with favorable geometry will occur within our field-of-view. We also show the sensitivity of {\sl CALET} for gamma-ray transient events which is the order of 10710^{-7}~erg\,cm2^{-2}\,s1^{-1} for an observation of 100~s duration.Comment: 12 pages, 8 figures, 1 table. Accepted for publication in Astrophysical Journa

    Measurement of cosmic ray chemical composition at Mt. Chacaltaya

    Get PDF
    BASJE grouphas measured the chemical composition of primary cosmic rays with energies around the “knee” with several methods. These measurements show that the averaged mass number of cosmic ray particles increases with energy upto the knee. In order to measure the chemical composition in much wider energy range, we have started a new experiment at Mt. Chacaltaya in 2000

    Present experiment of BASJE group at Mt. Chacaltaya

    Get PDF
    A compact air shower array to observe primary cosmic rays above a few TeV has been installed at Mt. Chacaltaya in Bolivia since 1996. This array is available to observe the air showers above 6 TeV and the longitudinal development curves above 50 TeV. The purpose of the observations is to study the chemical composition and the energy spectrum of cosmic rays in the energy region including the “knee” of the energy spectrum. First, the consistency between direct measurements (balloon-borne experiments) and air shower observations in the energy region from 50 TeV to 80 TeV is examined and confirmed. Next, the chemical composition and the energy spectrum are derived from the air shower observations. In the study, the longitudinal developments of shower particles are calculated by Monte Carlo simulations, assuming different chemical compositions above 80 TeV. The characteristics of the present air shower array and the comparison of the preliminary observed results with that of the simulations are presented

    Search for Anisotropy of Ultra-High Energy Cosmic Rays with the Telescope Array Experiment

    Get PDF
    We study the anisotropy of Ultra-High Energy Cosmic Ray (UHECR) events collected by the Telescope Array (TA) detector in the first 40 months of operation. Following earlier studies, we examine event sets with energy thresholds of 10 EeV, 40 EeV, and 57 EeV. We find that the distributions of the events in right ascension and declination are compatible with an isotropic distribution in all three sets. We then compare with previously reported clustering of the UHECR events at small angular scales. No significant clustering is found in the TA data. We then check the events with E>57 EeV for correlations with nearby active galactic nuclei. No significant correlation is found. Finally, we examine all three sets for correlations with the large-scale structure of the Universe. We find that the two higher-energy sets are compatible with both an isotropic distribution and the hypothesis that UHECR sources follow the matter distribution of the Universe (the LSS hypothesis), while the event set with E>10 EeV is compatible with isotropy and is not compatible with the LSS hypothesis at 95% CL unless large deflection angles are also assumed. We show that accounting for UHECR deflections in a realistic model of the Galactic magnetic field can make this set compatible with the LSS hypothesis.Comment: 10 pages, 9 figure

    Cosmic-Ray Boron Flux Measured from 8.4  GeV/n to 3.8  TeV/n with the Calorimetric Electron Telescope on the International Space Station

    Get PDF
    We present the measurement of the energy dependence of the boron flux in cosmic rays and its ratio to the carbon flux in an energy interval from 8.4 GeV/n to 3.8 TeV/n based on the data collected by the Calorimetric Electron Telescope (CALET) during ∼6.4 yr of operation on the International Space Station. An update of the energy spectrum of carbon is also presented with an increase in statistics over our previous measurement. The observed boron flux shows a spectral hardening at the same transition energy E0∼200 GeV/n of the C spectrum, though B and C fluxes have different energy dependences. The spectral index of the B spectrum is found to be γ=-3.047±0.024 in the interval 25<200 GeV/n. The B spectrum hardens by ΔγB=0.25±0.12, while the best fit value for the spectral variation of C is ΔγC=0.19±0.03. The B/C flux ratio is compatible with a hardening of 0.09±0.05, though a single power-law energy dependence cannot be ruled out given the current statistical uncertainties. A break in the B/C ratio energy dependence would support the recent AMS-02 observations that secondary cosmic rays exhibit a stronger hardening than primary ones. We also perform a fit to the B/C ratio with a leaky-box model of the cosmic-ray propagation in the Galaxy in order to probe a possible residual value λ0 of the mean escape path length λ at high energy. We find that our B/C data are compatible with a nonzero value of λ0, which can be interpreted as the column density of matter that cosmic rays cross within the acceleration region. © 2022 authors. Published by the American Physical Society
    corecore