42 research outputs found

    Human cortical organoids expose a differential function of GSK3 on cortical neurogenesis

    Get PDF
    The regulation of the proliferation and polarity of neural progenitors is crucial for the development of the brain cortex. Animal studies have implicated glycogen synthase kinase 3 (GSK3) as a pivotal regulator of both proliferation and polarity, yet the functional relevance of its signaling for the unique features of human corticogenesis remains to be elucidated. We harnessed human cortical brain organoids to probe the longitudinal impact of GSK3 inhibition through multiple developmental stages. Chronic GSK3 inhibition increased the proliferation of neural progenitors and caused massive derangement of cortical tissue architecture. Single-cell transcriptome profiling revealed a direct impact on early neurogenesis and uncovered a selective role of GSK3 in the regulation of glutamatergic lineages and outer radial glia output. Our dissection of the GSK3-dependent transcriptional network in human corticogenesis underscores the robustness of the programs determining neuronal identity independent of tissue architecture

    DEVELOPMENT AND CHARACTERIZATION OF TIO2 COATINGS PREPARED BY ELECTRIC ARC-PHYSICAL VAPOUR DEPOSITION SYSTEM

    Get PDF
    TiO2 thin coatings were prepared, on various substrates, through evaporation of metallic titanium in an oxidizing atmosphere by modified electric arc physical vapor deposition (EA-PVD). The coatings were characterized chemically (by means of XPS and SIMS) and from the structural point of view (by means of XRD and Raman spectroscopy), in order to understand the factors which lead to homoge-neous coatings with high anatase content. The type of substrate is the main parameter that influence the crystal structure of the coatings: when stainless steel is used as substrate the coatings consist es-sentially of rutile, while on glass substrates coatings containing mainly anatase are obtained. The photocatalytic activity of the samples upon UVA irradiation was tested by using phenol as the target molecule. Phenol in the solution can be photocatalytically and rapidly degraded through the EA-PVD anatase TiO2 coatings

    Neurosphere-Derived Cells Exert a Neuroprotective Action by Changing the Ischemic Microenvironment

    Get PDF
    BACKGROUND: Neurosphere-derived cells (NC), containing neural stem cells, various progenitors and more differentiated cells, were obtained from newborn C57/BL6 mice and infused in a murine model of focal ischemia with reperfusion to investigate if: 1) they decreased ischemic injury and restored brain function; 2) they induced changes in the environment in which they are infused; 3) changes in brain environment consequent to transient ischemia were relevant for NC action. METHODOLOGY/PRINCIPAL FINDINGS: NC were infused intracerebroventricularly 4 h or 7 d after 30 min middle cerebral artery occlusion. In ischemic mice receiving cells at 4 h, impairment of open field performance was significantly improved and neuronal loss significantly reduced 7–14 d after ischemia compared to controls and to ischemic mice receiving cells at 7 d. Infusion of murine foetal fibroblast in the same experimental conditions was not effective. Assessment of infused cell distribution revealed that they migrated from the ventricle to the parenchyma, progressively decreased in number but they were observable up to 14 d. In mice receiving NC at 7 d and in sham-operated mice, few cells could be observed only at 24 h, indicating that the survival of these cells in brain tissue relates to the ischemic environment. The mRNA expression of trophic factors such as Insulin Growth Factor-1, Vascular Endothelial Growth Factor-A, Transforming Growth Factor-β1, Brain Derived Neurotrophic Factor and Stromal Derived Factor−1α, as well as microglia/macrophage activation, increased 24 h after NC infusion in ischemic mice treated at 4 h compared to sham-operated and to mice receiving cells at 7 d. CONCLUSIONS/SIGNIFICANCE: NC reduce functional impairment and neuronal damage after ischemia/reperfusion injury. Several lines of evidence indicate that the reciprocal interaction between NC and the ischemic environment is crucial for NC protective actions. Based on these results we propose that a bystander control of the ischemic environment may be the mechanism used by NC to rapidly restore acutely injured brain function

    Lack of changes in the PI3K/AKT survival pathway in the spinal cord motor neurons of a mouse model of familial amyotrophic lateral sclerosis

    No full text
    The vulnerability of motor neurons in transgenic SOD1G93A mice, a model of familial amyotrophic lateral sclerosis (ALS), may depend on the failure of these cells to activate survival mechanisms in response to the toxic mutant SOD1. To test this we investigated whether defects in the PI3K/Akt pathway, a survival signal, and of its neuron-specific activator, Rai, were important for motor neuron degeneration in these mice. No substantial changes were found in the levels of Rai, PI3K(p85) or phosphorylated Akt (P-Akt) in the ventral horn of spinal cord of SOD1G93A mice during disease progression. P-Akt immunoreactivity was the same in degenerating and healthy motor neurons. Rai ablation in SOD1G93A mice slightly accelerated the motor dysfunction without affecting their life span. Thus, motor neurons in SOD1G93A mice do not lose the pro-survival PI3K/Akt signal nor increase it in order to suppress the cell death mechanisms
    corecore