67 research outputs found

    Piramidação de genes de resistĂȘncia Ă  brusone em trigo via retrocruzamento.

    Get PDF
    Editores técnicos: Joseani Mesquita Antunes, Ana Lídia Variani Bonato, Mårcia Barrocas Moreira Pimentel

    Expanding the knowledge on lignocellulolytic and redox enzymes of worker and soldier castes from the lower termite coptotermes gestroi

    Get PDF
    Termites are considered one of the most efficient decomposers of lignocelluloses on Earth due to their ability to produce, along with its microbial symbionts, a repertoire of carbohydrate-active enzymes (CAZymes). Recently, a set of Pro-oxidant, Antioxidant, and Detoxification enzymes (PAD) were also correlated with the metabolism of carbohydrates and lignin in termites. The lower termite Coptotermes gestroi is considered the main urban pest in Brazil, causing damage to wood constructions. Recently, analysis of the enzymatic repertoire of C. gestroi unveiled the presence of different CAZymes. Because the gene profile of CAZy/PAD enzymes endogenously synthesized by C. gestroi and also by their symbiotic protists remains unclear, the aim of this study was to explore the eukaryotic repertoire of these enzymes in worker and soldier castes of C. gestroi. Our findings showed that worker and soldier castes present similar repertoires of CAZy/PAD enzymes, and also confirmed that endo-glucanases (GH9) and beta-glucosidases (GH1) were the most important glycoside hydrolase families related to lignocellulose degradation in both castes. Classical cellulases such as exo-glucanases (GH7) and endo-glucanases (GH5 and GH45), as well as classical xylanases (GH10 and GH11), were found in both castes only taxonomically related to protists, highlighting the importance of symbiosis in C. gestroi. Moreover, our analysis revealed the presence of Auxiliary Activity enzyme families (AAs), which could be related to lignin modifications in termite digestomes. In conclusion, this report expanded the knowledge on genes and proteins related to CAZy/PAD enzymes from worker and soldier castes of lower termites, revealing new potential enzyme candidates for second-generation biofuel processes7CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP140796/2013-4; 310186/2014-5; 442333/2014-511/20977-3; 15/06971-3; 12/19040-0; 14/10351-8; 06/59086-8; 14/20576- 7; 13/03061-0; 10/11469-1; 08/58037-9; 14/50371-8; 08/50114-

    Immunohistochemical analysis of brain lesions using S100B and glial fibrillary acidic protein antibodies in arundic acid- (ONO-2506) treated stroke-prone spontaneously hypertensive rats

    Get PDF
    Stroke-prone spontaneously hypertensive rats (SHRSP) used as a model of essential hypertension cause a high incidence of brain stroke on the course of hypertension. Incidences and sizes of brain lesions are known to relate to the astrocyte activities. Therefore, relation between brain damage and the expression profile of the astrocytes was investigated with morphometric and immunohistochemical analyses using astrocyte marker antibodies of S100B and glial fibrillary acidic protein (GFAP) with or without arundic acid administration, a suppressor on the activation of astrocytes. Arundic acid extended the average life span of SHRSP. An increase in brain tissue weight was inhibited concomitant with a lower rate of gliosis/hemosiderin deposit/scarring in brain lesions. S100B- or GFAP-positive dot and filamentous structures were decreased in arundic acid-treated SHRSP, and this effect was most pronounced in the cerebral cortex, white matter, and pons, and less so in the hippocampus, diencephalon, midbrain, and cerebellum. Blood pressure decreased after administration of arundic acid in the high-dose group (100 mg/kg/day arundic acid), but not in the low-dose group (30 mg/kg/day). These data indicate that arundic acid can prevent hypertension-induced stroke, and may inhibit the enlargement of the stroke lesion by preventing the inflammatory changes caused by overproduction of the S100B protein in the astrocytes

    On the roles of AA15 lytic polysaccharide monooxygenases derived from the termite Coptotermes gestroi

    Get PDF
    Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes which catalyze the oxidative cleavage of polysaccharides. LPMOs belonging to family 15 in the Auxiliary Activity (AA) class from the Carbohydrate-Active Enzyme database are found widespread across the Tree of Life, including viruses, algae, oomycetes and animals. Recently, two AA15s from the firebrat Thermobia domestica were reported to have oxidative activity, one towards cellulose or chitin and the other towards chitin, signalling that AA15 LPMOs from insects potentially have different biochemical functions. Herein, we report the identification and characterization of two family AA15 members from the lower termite Coptotermes gestroi. Addition of Cu(II) to CgAA15a or CgAA15b had a thermostabilizing effect on both. Using ascorbate and O2 as co-substrates, CgAA15a and CgAA15b were able to oxidize chitin, but showed no activity on celluloses, xylan, xyloglucan and starch. Structural models indicate that the LPMOs from C. gestroi (CgAA15a/CgAA15b) have a similar fold but exhibit key differences in the catalytic site residues when compared to the cellulose/chitin-active LPMO from T. domestica (TdAA15a), especially the presence of a non-coordinating phenylalanine nearby the Cu ion in CgAA15a/b, which appears as a tyrosine in the active site of TdAA15a. Despite the overall similarity in protein folds, however, mutation of the active site phenylalanine in CgAA15a to a tyrosine did not expanded the enzymatic specificity from chitin to cellulose. Our data show that CgAA15a/b enzymes are likely not involved in lignocellulose digestion but might play a role in termite developmental processes as well as on chitin and nitrogen metabolisms

    Evidence for a wide extra-astrocytic distribution of S100B in human brain

    Get PDF
    BACKGROUND: S100B is considered an astrocytic in-situ marker and protein levels in cerebrospinal fluid (CSF) or serum are often used as biomarker for astrocytic damage or dysfunction. However, studies on S100B in the human brain are rare. Thus, the distribution of S100B was studied by immunohistochemistry in adult human brains to evaluate its cell-type specificity. RESULTS: Contrary to glial fibrillary acidic protein (GFAP), which selectively labels astrocytes and shows only faint ependymal immunopositivity, a less uniform staining pattern was seen in the case of S100B. Cells with astrocytic morphology were primarily stained by S100B in the human cortex, while only 20% (14–30%) or 14% (7–35%) of all immunopositive cells showed oligodendrocytic morphology in the dorsolateral prefrontal and temporal cortices, respectively. In the white matter, however, most immunostained cells resembled oligodendrocytes [frontal: 75% (57–85%); temporal: 73% (59–87%); parietal: 79% (62–89%); corpus callosum: 93% (86–97%)]. S100B was also found in ependymal cells, the choroid plexus epithelium, vascular endothelial cells, lymphocytes, and several neurones. Anti-myelin basic protein (MBP) immunolabelling showed an association of S100B with myelinated fibres, whereas GFAP double staining revealed a distinct subpopulation of cells with astrocytic morphology, which solely expressed S100B but not GFAP. Some of these cells showed co-localization of S100B and A2B5 and may be characterized as O2A glial progenitor cells. However, S100B was not detected in microglial cells, as revealed by double-immunolabelling with HLA-DR. CONCLUSION: S100B is localized in many neural cell-types and is less astrocyte-specific than GFAP. These are important results in order to avoid misinterpretation in the identification of normal and pathological cell types in situ and in clinical studies since S100B is continuously used as an astrocytic marker in animal models and various human diseases

    Oxidative stress and S-100B protein in children with bacterial meningitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacterial meningitis is often associated with cerebral compromise which may be responsible for neurological sequelae in nearly half of the survivors. Little is known about the mechanisms of CNS involvement in bacterial meningitis. Several studies have provided substantial evidence for the key role of nitric oxide (NO) and reactive oxygen species in the complex pathophysiology of bacterial meningitis.</p> <p>Methods</p> <p>In the present study, serum and CSF levels of NO, lipid peroxide (LPO) (mediators for oxidative stress and lipid peroxidation); total thiol, superoxide dismutase (SOD) (antioxidant mediators) and S-100B protein (mediator of astrocytes activation and injury), were investigated in children with bacterial meningitis (n = 40). Albumin ratio (CSF/serum) is a marker of blood-CSF barriers integrity, while mediator index (mediator ratio/albumin ratio) is indicative of intrathecal synthesis.</p> <p>Results</p> <p>Compared to normal children (n = 20), patients had lower serum albumin but higher NO, LPO, total thiol, SOD and S-100B. The ratios and indices of NO and LPO indicate blood-CSF barriers dysfunction, while the ratio of S-100B indicates intrathecal synthesis. Changes were marked among patients with positive culture and those with neurological complications. Positive correlation was found between NO index with CSF WBCs (r = 0.319, p < 0.05); CSF-LPO with CSF-protein (r = 0.423, p < 0.01); total thiol with LPO indices (r = 0.725, p < 0.0001); S-100B and Pediatric Glasow Coma Scores (0.608, p < 0.0001); CSF-LPO with CSF-S-100B (r = 0.482, p < 0.002); serum-total thiol with serum S-100B (r = 0.423, p < 0.01).</p> <p>Conclusion</p> <p>This study suggests that loss of integrity of brain-CSF barriers, oxidative stress and S-100B may contribute to the severity and neurological complications of bacterial meningitis.</p

    Efficacy and safety of aripiprazole in the treatment of bipolar disorder: a systematic review

    Get PDF
    Abstract BACKGROUND: The current article is a systematic review concerning the efficacy and safety of aripiprazole in the treatment of bipolar disorder. METHODS: A systematic Medline and repositories search concerning the usefulness of aripiprazole in bipolar disorder was performed, with the combination of the words 'aripiprazole' and 'bipolar'. RESULTS: The search returned 184 articles and was last updated on 15 April 2009. An additional search included repositories of clinical trials and previous systematic reviews specifically in order to trace unpublished trials. There were seven placebo-controlled randomised controlled trials (RCTs), six with comparator studies and one with add-on studies. They assessed the usefulness of aripiprazole in acute mania, acute bipolar depression and during the maintenance phase in comparison to placebo, lithium or haloperidol. CONCLUSION: Aripiprazole appears effective for the treatment and prophylaxis against mania. The data on bipolar depression are so far negative, however there is a need for further study at lower dosages. The most frequent adverse effects are extrapyramidal signs and symptoms, especially akathisia, without any significant weight gain, hyperprolactinaemia or laboratory test changes

    A Guide to Medications Inducing Salivary Gland Dysfunction, Xerostomia, and Subjective Sialorrhea: A Systematic Review Sponsored by the World Workshop on Oral Medicine VI

    Get PDF
    • 

    corecore