2,123 research outputs found

    The GoSam package: an overview

    Full text link
    The public code GOSAM for the computation of the one loop virtual corrections to scattering amplitudes in the Standard Model and beyond is presented. Particular emphasis is devoted to the interface with other public tools via the Binoth Les Houches Accord. We show with examples that doing LHC phenomenology including automatically Next to Leading Order QCD corrections is now handy.Comment: 8 pages, 4 figures, presented at the 11th DESY workshop "Loops and Legs in Quantum Field Theory", April 2012, Wernigerode, German

    Baryogenesis via leptogenesis in SO(10) models

    Get PDF
    We discuss the baryogenesis via leptogenesis mechanism within the supersymmetric and nonsupersymmetric SO(10) models. We find that the nonsupersymmetric model, endowed with an intermediate scale, is generally favoured, unless some fine tuning occurs in the supersymmetric case.Comment: 9 pages, RevTex, with 1 figur

    QCD corrections to J/psi and Upsilon production at hadron colliders

    Full text link
    We calculate the cross section for hadroproduction of a pair of heavy quarks in a 3S1 color-singlet state at next-to-leading order in QCD. This corresponds to the leading contribution in the NRQCD expansion for J/psi and Upsilon production. The higher-order corrections have a large impact on the p_T distributions, enhancing the production at high p_T both at the Tevatron and at the LHC. The total decay rate of a 3S1 into hadrons at NLO is also computed, confirming for the first time the result obtained by Mackenzie and Lepage in 1981.Comment: 5 pages, 5 figure

    Heavy quark radiation in NLO+PS POWHEG generators

    Get PDF
    In this paper we deal with radiation from heavy quarks in the context of next-to-leading order calculations matched to parton shower generators. A new algorithm for radiation from massive quarks is presented that has considerable advantages over the one previously employed. We implement the algorithm in the framework of the POWHEG−BOX{\tt POWHEG-BOX}, and compare it with the previous one in the case of the hvq{\tt hvq} generator for bottom production in hadronic collisions, and in the case of the bb4l{\tt bb4l} generator for top production and decay.Comment: 14 pages, 13 figures, LaTe

    Neutrino masses and mixings in SO(10)

    Get PDF
    Assuming a Zee-like matrix for the right-handed neutrino Majorana masses in the see-saw mechanism, one gets maximal mixing for vacuum solar oscillations, a very small value for Ue3U_{e3} and an approximate degeneracy for the two lower neutrino masses. The scale of right-handed neutrino Majorana masses is in good agreement with the value expected in a SO(10) model with Pati-Salam SU(4)\ts SU(2)\ts SU(2) intermediate symmetry.Comment: 11 pages, no figures. References adde

    Fully exclusive heavy quark-antiquark pair production from a colourless initial state at NNLO in QCD

    Get PDF
    We present a local subtraction scheme for computing next-to-next-to-leading order QCD corrections to the production of a massive quark-antiquark pair from a colourless initial state. The subtraction terms are built following the CoLoRFulNNLO method and refined in such a way that their integration gives rise to compact, fully analytic expressions. All ingredients necessary for a numerical implementation of our subtraction scheme are provided in detail. As an example, we calculate the fully differential decay rate of the Standard Model Higgs boson to massive bottom quarks at next-to-next-to-leading order accuracy in perturbative QCD

    Low Q 2 boundary conditions for DGLAP equations dictated by quantum statistical mechanics

    Get PDF
    We discuss the role of quantum statistical mechanics in the description of the parton distribution functions in the proton. It provides the low Q 2 boundary conditions for DGLAP equations in terms of Fermi–Dirac and Bose–Einstein functions of the fractional momentum variable x. The successful comparison with experimental data on both the unpolarised and polarised deep inelastic structure functions is reviewed. We argue that the statistical approach for the nucleon parton distributions functions has the nice feature that the free model parameters are fixed from data with high statistics and small systematic uncertainties, providing a strong constraint on the information not supplied by the experiments

    Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO

    Get PDF
    We consider QCD radiative corrections to Standard Model Higgs boson production in association with a W boson in hadron collisions. We present a fully exclusive calculation up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. To perform this NNLO computation, we use a recently proposed version of the subtraction formalism. Our calculation includes finite-width effects, the leptonic decay of the W boson with its spin correlations, and the decay of the Higgs boson into a bbbar pair. We present selected numerical results at the Tevatron and the LHC.Comment: 7 pages, 2 figure

    The qT subtraction method: electroweak corrections and power suppressed contributions

    Get PDF
    Building upon the formulation of transverse-momentum resummation for heavy-quark hadroproduction, we present the first application of the qT subtraction formalism to the computation of electroweak corrections to massive lepton pairs through the Drell–Yan mechanism. We then study the power suppressed contributions to the qT subtraction formula in the parameter rcut, defined as the minimum transverse momentum of the lepton pair normalised to its invariant mass. We analytically compute the leading power correction from initial and final-state radiation to the inclusive cross section. In the case of initial-state radiation the power correction is quadratic in rcut and our analytic result is consistent with results previously obtained in the literature. Final-state radiation produces linear contributions in rcut that may challenge the efficiency of the qT subtraction procedure. We explicitly compute the linear power correction in the case of the inclusive cross section and we discuss the extension of our calculation to differential distributions

    NLO QCD corrections to the production of Higgs plus two jets at the LHC

    Full text link
    We present the calculation of the NLO QCD corrections to the associated production of a Higgs boson and two jets, in the infinite top-mass limit. We discuss the technical details of the computation and we show the numerical impact of the radiative corrections on several observables at the LHC. The results are obtained by using a fully automated framework for fixed order NLO QCD calculations based on the interplay of the packages GoSam and Sherpa. The evaluation of the virtual corrections constitutes an application of the d-dimensional integrand-level reduction to theories with higher dimensional operators. We also present first results for the one-loop matrix elements of the partonic processes with a quark-pair in the final state, which enter the hadronic production of a Higgs boson together with three jets in the infinite top-mass approximation.Comment: 9 pages, 7 figures, references added, published in Phys.Lett.
    • 

    corecore