136 research outputs found
The multilevel trigger system of the DIRAC experiment
The multilevel trigger system of the DIRAC experiment at CERN is presented.
It includes a fast first level trigger as well as various trigger processors to
select events with a pair of pions having a low relative momentum typical of
the physical process under study. One of these processors employs the drift
chamber data, another one is based on a neural network algorithm and the others
use various hit-map detector correlations. Two versions of the trigger system
used at different stages of the experiment are described. The complete system
reduces the event rate by a factor of 1000, with efficiency 95% of
detecting the events in the relative momentum range of interest.Comment: 21 pages, 11 figure
Measurement of the Xi-p Scattering Cross Sections at Low Energy
In this paper we report cross-section measurements for elastic and
inelastic scatterings at low energy using a scintillating fiber active target.
Upper limit on the total cross-section for the elastic scattering was found to
be 24 mb at 90% confidence level, and the total cross section for the
reaction was found to be mb. We
compare the results with currently competing theoretical estimates.Comment: 9 page
First atom lifetime and scattering length measurements
The results of a search for hydrogen-like atoms consisting of
mesons are presented. Evidence for atom production
by 24 GeV/c protons from CERN PS interacting with a nickel target has been seen
in terms of characteristic pairs from their breakup in the same target
() and from Coulomb final state interaction (). Using
these results the analysis yields a first value for the atom lifetime
of fs and a first model-independent measurement of
the S-wave isospin-odd scattering length
( for isospin ).Comment: 14 pages, 8 figure
Determination of scattering lengths from measurement of atom lifetime
The DIRAC experiment at CERN has achieved a sizeable production of
atoms and has significantly improved the precision on its lifetime
determination. From a sample of 21227 atomic pairs, a 4% measurement of the
S-wave scattering length difference
has been attained, providing an important test of Chiral Perturbation Theory.Comment: 6 pages, 6 figure
Investigation of pairs in the effective mass region near
The DIRAC experiment at CERN investigated in the reaction
the particle pairs and with relative momentum in the pair system less than 100 MeV/c.
Because of background influence studies, DIRAC explored three subsamples of
pairs, obtained by subtracting -- using time-of-flight (TOF) technique
-- background from initial distributions with sample fractions
more than 70\%, 50\% and 30\%. The corresponding pair distributions in and
in its longitudinal projection were analyzed first in a Coulomb model,
which takes into account only Coulomb final state interaction (FSI) and
assuming point-like pair production. This Coulomb model analysis leads to a
yield increase of about four at MeV/c compared to 100 MeV/c.
In order to study contributions from strong interaction, a second more
sophisticated model was applied, considering besides Coulomb FSI also strong
FSI via the resonances and and a variable distance
between the produced mesons. This analysis was based on three different
parameter sets for the pair production. For the 70\% subsample and with best
parameters, pairs was found to be compared to extracted by means of the Coulomb model. Knowing the efficiency
of the TOF cut for background suppression, the total number of detected
pairs was evaluated to be around , which agrees with
the result from the 30\% subsample. The pair number in the 50\%
subsample differs from the two other values by about three standard deviations,
confirming -- as discussed in the paper -- that experimental data in this
subsample is less reliable
- …