613 research outputs found

    Beyond pairs: definition and interpretation of third-order structure in spatial point patterns

    Get PDF
    Spatial distributions of biological species are an important source of information for understanding local interactions at the scale of individuals. Technological advances have made it easier to measure these distributions as spatial point patterns, specifying the locations of individuals. Extensive attention has been devoted to analyzing the second-order structure of such point patterns by focusing on pairs of individuals, and it is well known that the local crowdedness of individuals can thus be quantified. Statistical measures such as a point pattern's pair correlation function or Ripley's K function show whether a given point pattern is clustered (excess of short-distance pairs) or overdispersed (shortage of short-distance pairs). These notions are naturally defined in comparison with control patterns exhibiting complete spatial randomness, i.e., an absence of any spatial structure. However, here is no rational reason why the analysis of point patterns should stop at the second order. In this paper, we focus on triplets of individuals in an attempt to quantify and interpret the third-order structure of a point pattern. We demonstrate that point patterns with 'bandedness', in which individuals are primarily distributed within bands, can be detected by an excess of thinner triplets at a characteristic spatial scale linked to the band's width. In this context, we show how the generation of control patterns as a reference for gauging a test pattern's triplet frequencies is critical for defining and interpreting the third-order structure of point patterns. Since perfect information on a point pattern's second-order structure typically suffices for its unique reconstruction (up to translation, rotation, and reflection), we conjecture that it is essential to minimally coarse-grain such second-order information before using it to generate control patterns for identifying a point pattern's third-order structure. We recommend the further exploration of this conjecture for future studies

    Efficient magneto-optical trapping of Yb atoms with a violet laser diode

    Full text link
    We report the first efficient trapping of rare-earth Yb atoms with a high-power violet laser diode (LD). An injection-locked violet LD with a 25 mW frequency-stabilized output was used for the magneto-optical trapping (MOT) of fermionic as well as bosonic Yb isotopes. A typical number of 4×1064\times 10^6 atoms for 174^{174}Yb with a trap density of ∼1×108/\sim 1\times10^8/cm3^3 was obtained. A 10 mW violet external-cavity LD (ECLD) was used for the one-dimensional (1D) slowing of an effusive Yb atomic beam without a Zeeman slower resulting in a 35-fold increase in the number of trapped atoms. The overall characteristics of our compact violet MOT, e.g., the loss time of 1 s, the loading time of 400 ms, and the cloud temperature of 0.7 mK, are comparable to those in previously reported violet Yb MOTs, yet with a greatly reduced cost and complexity of the experiment.Comment: 5 pages, 3 figures, 1 table, Phys. Rev. A (to be published

    How to evade a coevolving brood parasite: egg discrimination versus egg variability as host defences

    Get PDF
    Arms races between avian brood parasites and their hosts often result in parasitic mimicry of host eggs, to evade rejection. Once egg mimicry has evolved, host defences could escalate in two ways: (i) hosts could improve their level of egg discrimination; and (ii) negative frequency-dependent selection could generate increased variation in egg appearance (polymorphism) among individuals. Proficiency in one defence might reduce selection on the other, while a combination of the two should enable successful rejection of parasitic eggs. We compared three highly variable host species of the Afrotropical cuckoo finch Anomalospiza imberbis, using egg rejection experiments and modelling of avian colour and pattern vision. We show that each differed in their level of polymorphism, in the visual cues they used to reject foreign eggs, and in their degree of discrimination. The most polymorphic host had the crudest discrimination, whereas the least polymorphic was most discriminating. The third species, not currently parasitized, was intermediate for both defences. A model simulating parasitic laying and host rejection behaviour based on the field experiments showed that the two host strategies result in approximately the same fitness advantage to hosts. Thus, neither strategy is superior, but rather they reflect alternative potential evolutionary trajectories

    Finite temperature scaling theory for the collapse of Bose-Einstein condensate

    Full text link
    We show how to apply the scaling theory in an inhomogeneous system like harmonically trapped Bose condensate at finite temperatures. We calculate the temperature dependence of the critical number of particles by a scaling theory within the Hartree-Fock approximation and find that there is a dramatic increase in the critical number of particles as the condensation point is approached.Comment: Published online [6 pages, 3 figures

    Responsive glyco-poly(2-oxazoline)s: synthesis, cloud point tuning, and lectin binding

    Get PDF
    A new sugar-substituted 2-oxazoline monomer was prepared using the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. Its copolymerization with 2-ethyl-2-oxazoline as well as 2-(dec-9-enyl)-2-oxazoline, yielding well-defined copolymers with the possibility to tune the properties by thiol-ene "click" reactions, is described. Extensive solubility studies on the corresponding glycocopolymers demonstrated that the lower critical solution temperature behavior and pH-responsiveness of these copolymers can be adjusted in water and phosphate-buffered saline (PBS) depending on the choice of the thiol. By conjugation of 2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranose and subsequent deprotection of the sugar moieties, the hydrophilicity of the copolymer could be increased significantly, allowing a cloud-point tuning in the physiological range. Furthermore, the binding capability of the glycosylated copoly(2-oxazoline) to concanavalin A was investigated

    Coevolution in Action: Disruptive Selection on Egg Colour in an Avian Brood Parasite and Its Host

    Get PDF
    Trait polymorphism can evolve as a consequence of frequency-dependent selection. Coevolutionary interactions between hosts and parasites may lead to selection on both to evolve extreme phenotypes deviating from the norm, through disruptive selection.Here, we show through detailed field studies and experimental procedures that the ashy-throated parrotbill (Paradoxornis alphonsianus) and its avian brood parasite, the common cuckoo (Cuculus canorus), have both evolved egg polymorphism manifested in discrete immaculate white, pale blue, and blue egg phenotypes within a single population. In this host-parasite system the most common egg colours were white and blue, with no significant difference in parasitism rates between hosts laying eggs of either colour. Furthermore, selection on parasites for countering the evolution of host egg types appears to be strong, since ashy-throated parrotbills have evolved rejection abilities for even partially mimetic eggs.The parrotbill-cuckoo system constitutes a clear outcome of disruptive selection on both host and parasite egg phenotypes driven by coevolution, due to the cost of parasitism in the host and by host defences in the parasite. The present study is to our knowledge the first to report the influence of disruptive selection on evolution of discrete phenotypes in both parasite and host traits in an avian brood parasitism system

    Evolution of defence portfolios in exploiter-victim systems

    Get PDF
    Some organisms maintain a battery of defensive strategies against their exploiters (predators, parasites or parasitoids), while others fail to employ a defence that seems obvious. In this paper, we shall investigate the circumstances under which defence strategies might be expected to evolve. Brood parasites and their hosts provide our main motivation, and we shall discuss why the reed warbler Acrocephalus scirpaceus has evolved an egg-rejection but not a chick-rejection strategy as a defence against the common (Eurasian) cuckoo Cuculus canorus, while the superb fairy-wren Malurus cyaneus has evolved a chick-rejection but not an egg-rejection strategy as a defence against Horsfield's bronze-cuckoo Chrysococcyx basalis. We suggest that the answers lie in strategy-blocking, where one strategy (the blocking strategy) prevents the appearance of another (the blocked strategy) that would be adaptive in its absence. This may be common in exploiter-victim systems. Š 2006 Springer Science+Business Media, Inc

    Quantum Computing and Quantum Simulation with Group-II Atoms

    Full text link
    Recent experimental progress in controlling neutral group-II atoms for optical clocks, and in the production of degenerate gases with group-II atoms has given rise to novel opportunities to address challenges in quantum computing and quantum simulation. In these systems, it is possible to encode qubits in nuclear spin states, which are decoupled from the electronic state in the 1^1S0_0 ground state and the long-lived 3^3P0_0 metastable state on the clock transition. This leads to quantum computing scenarios where qubits are stored in long lived nuclear spin states, while electronic states can be accessed independently, for cooling of the atoms, as well as manipulation and readout of the qubits. The high nuclear spin in some fermionic isotopes also offers opportunities for the encoding of multiple qubits on a single atom, as well as providing an opportunity for studying many-body physics in systems with a high spin symmetry. Here we review recent experimental and theoretical progress in these areas, and summarise the advantages and challenges for quantum computing and quantum simulation with group-II atoms.Comment: 11 pages, 7 figures, review for special issue of "Quantum Information Processing" on "Quantum Information with Neutral Particles
    • …
    corecore