6,823 research outputs found

    Plant canopy shape and the influences on UV exposures to the canopy

    Get PDF
    The solar spectra at selected sites over hemispherical, conical and pinnacle plant canopy models has been evaluated with a dosimetric technique. The irradiance at the sites varies by up to a factor of 0.31 compared to the irradiance on a horizontal plane. The biologically effective (UVBE) exposures evaluated with the dosimetric technique at sites over the plant canopy are up to 19% of that on a horizontal plane. Compared to a spectroradiometer, the technique provides a more practicable method of measuring the UVBE exposures at multiple sites over a plant canopy. Usage of a dosimeter at one site to provide the exposures at that site for different sun angles introduces an error of more than 50%. Knowledge of the spectra allowed the UV and UVBE exposures to be calculated at each site along with the exposures to the entire canopies. These were dependent on the sun angle and the canopy shape. For plant damage, the UVBE was a maximum of about 1.4 mJ cm-2/min. Compared to the hemispherical canopy, the UVBE exposure for generalised plant damage was 45% less for the pinnacle canopy and 23% less for the conical canopy. The canopy exposures could not be determined from measurements of the ambient exposure

    Dihydropyrimidine-thiones and clioquinol synergize to target beta-amyloid cellular pathologies through a metal-dependent mechanism

    Full text link
    The lack of therapies for neurodegenerative diseases arises from our incomplete understanding of their underlying cellular toxicities and the limited number of predictive model systems. It is critical that we develop approaches to identify novel targets and lead compounds. Here, a phenotypic screen of yeast proteinopathy models identified dihydropyrimidine-thiones (DHPM-thiones) that selectively rescued the toxicity caused by β-amyloid (Aβ), the peptide implicated in Alzheimer’s disease. Rescue of Aβ toxicity by DHPM-thiones occurred through a metal-dependent mechanism of action. The bioactivity was distinct, however, from that of the 8-hydroxyquinoline clioquinol (CQ). These structurally dissimilar compounds strongly synergized at concentrations otherwise not competent to reduce toxicity. Cotreatment ameliorated Aβ toxicity by reducing Aβ levels and restoring functional vesicle trafficking. Notably, these low doses significantly reduced deleterious off-target effects caused by CQ on mitochondria at higher concentrations. Both single and combinatorial treatments also reduced death of neurons expressing Aβ in a nematode, indicating that DHPM-thiones target a conserved protective mechanism. Furthermore, this conserved activity suggests that expression of the Aβ peptide causes similar cellular pathologies from yeast to neurons. Our identification of a new cytoprotective scaffold that requires metal-binding underscores the critical role of metal phenomenology in mediating Aβ toxicity. Additionally, our findings demonstrate the valuable potential of synergistic compounds to enhance on-target activities, while mitigating deleterious off-target effects. The identification and prosecution of synergistic compounds could prove useful for developing AD therapeutics where combination therapies may be required to antagonize diverse pathologies.D.F.T was funded by NRSA Fellowship NIH 5F32NS061419. D.F.T. and S.L. were supported by WIBR funds in support of research on Regenerative Disease, the Picower/JPB Foundation, and the Edward N. and Della L. Thome Foundation. G.A.C. and S.L. were funded by a Howard Hughes Medical Institute (HHMI) Collaborative Innovation Award. L.E.B., R.T., and S.E.S. were funded by NIH GM086180, NIH GM067041, and NIH GM111625. (5F32NS061419 - NRSA Fellowship NIH; WIBR funds in support of research on Regenerative Disease; Picower/JPB Foundation; Edward N. and Della L. Thome Foundation; Howard Hughes Medical Institute (HHMI) Collaborative Innovation Award; GM086180 - NIH; NIH GM067041 - NIH; NIH GM111625 - NIH)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705239/Accepted manuscrip

    Decay of the Z Boson into Scalar Particles

    Full text link
    In extensions of the standard model, light scalar particles are often possible because of symmetry considerations. We study the decay of the Z boson into such particles. In particular, we consider for illustration the scalar sector of a recently proposed model of the 17-keV neutrino which satisfies all laboratory, astrophysical, and cosmological constraints.Comment: 11 pages (2 figures, not included) (Revised, Oct 1992). Some equations have been corrected and 1 figure has been eliminate

    BIOMECHANIC OF BALANCE:PARADIGMS AND PROCEDURES

    Get PDF
    Balance, like coordination, is understood by virtually everyone to be a critical component of skillful movement. Yet there exists very little biomechanical research into how balance is employed and improved by performers of disparate abilities in different sports. The purpose of this symposium is to open a dialogue on the biomechanics of balance. The first part of the symposium will be an exposition of definitions and conceptions of balance from the literature. While most of the traditional approaches provide clarity on some aspect of balance, not one is broad enough to encompass the diversity of contexts and proficiencies in sport. By combining features of many approaches and elaborating on the false dichotomies (e.g., static vs. dynamic), we propose a more contemporary conception of balance which deals with the interplay of stability and mobility of the body with respect to its base of support. Depending on the sporting context, more stability than mobility may be desired, and depending on the skill level of the performer, more instability than stability may be apparent. There are many ways to operationalize stability and mobility: for example, using video, we can measure the position and movement of the line of gravity with respect to the base of support, and using a force plate, we can assess the A/P and M/L forces and the center of pressure. The second part of the symposium will be an exploration of balance using the stability/mobility paradigm and procedures. Specifically we will compare intermediate and advanced performers in four sports skills: In the basketball jump shot, which requires great A/P stability over a small base of support, higher skill was associated with less in stability. In the volleyball spike, which requires arrested mobility as the horizontal approach is transformed into the vertical jump, higher skill was associated with greater reduction in mobility. In the golf pitch shot, which requires little mobility in either the A/P or M/L directions, higher skill was associated with less mobility. In the weight lifting snatch, which requires an early horizontal movement of the bar followed by relative stability, lower skill was associated with greater stability. Given that the snatch also has a perceptible risk of injury, this finding is not surprising. Following a summary, the audience will be invited to participate in a discussion on the biomechanics of balance

    The Shape and Scale of Galactic Rotation from Cepheid Kinematics

    Get PDF
    A catalog of Cepheid variables is used to probe the kinematics of the Galactic disk. Radial velocities are measured for eight distant Cepheids toward l = 300; these new Cepheids provide a particularly good constraint on the distance to the Galactic center, R_0. We model the disk with both an axisymmetric rotation curve and one with a weak elliptical component, and find evidence for an ellipticity of 0.043 +/- 0.016 near the Sun. Using these models, we derive R_0 = 7.66 +/- 0.32 kpc and v_circ = 237 +/- 12 km/s. The distance to the Galactic center agrees well with recent determinations from the distribution of RR Lyrae variables, and disfavors most models with large ellipticities at the solar orbit.Comment: 36 pages, LaTeX, 10 figure

    Large Angular Scale CMB Anisotropy Induced by Cosmic Strings

    Full text link
    We simulate the anisotropy in the cosmic microwave background (CMB) induced by cosmic strings. By numerically evolving a network of cosmic strings we generate full-sky CMB temperature anisotropy maps. Based on 192192 maps, we compute the anisotropy power spectrum for multipole moments ℓ≤20\ell \le 20. By comparing with the observed temperature anisotropy, we set the normalization for the cosmic string mass-per-unit-length μ\mu, obtaining Gμ/c2=1.05−0.20+0.35×10−6G\mu/c^2=1.05 {}^{+0.35}_{-0.20} \times10^{-6}, which is consistent with all other observational constraints on cosmic strings. We demonstrate that the anisotropy pattern is consistent with a Gaussian random field on large angular scales.Comment: 4 pages, RevTeX, two postscript files, also available at http://www.damtp.cam.ac.uk/user/defects/ to appear in Physical Review Letters, 23 September 199

    Observation of the Halo of NGC 3077 Near the "Garland" Region Using the Hubble Space Telescope

    Get PDF
    We report the detection of upper main sequence stars and red giant branch stars in the halo of an amorphous galaxy, NGC3077. The observations were made using Wide Field Planetary Camera~2 on board the Hubble Space Telescope. The red giant branch luminosity function in I-band shows a sudden discontinuity at I = 24.0 +- 0.1 mag. Identifying this with the tip of the red giant branch (TRGB), and adopting the calibration provided by Lee, Freedman, & Madore (1993) and the foreground extinction of A_B = 0.21 mag, we obtain a distance modulus of (m-M)_0 = 27.93 +- 0.14(random) +- 0.16(sys). This value agrees well with the distance estimates of four other galaxies in the M81 Group. In addition to the RGB stars, we observe a concentration of upper main sequence stars in the halo of NGC3077, which coincides partially with a feature known as the ``Garland''. Using Padua isochrones, these stars are estimated to be <150 Myrs old. Assuming that the nearest encounter between NGC3077 and M81 occurred 280 Myrs ago as predicted by the numerical simulations (Yun 1997), the observed upper main sequence stars are likely the results of the star formation triggered by the M81-NGC3077 tidal interaction.Comment: 15 pages, 8 figures. Accepted for publication in Astrophysical Journa

    Global, Multi-Year Analysis of Clouds and Earth's Radiant Energy System Terra Observations and Radiative Transfer Calculations

    Get PDF
    An extended record of the Terra Surface and Atmosphere Radiation Budget (SARB) computed by CERES (Clouds and Earth s Radiant Energy System) is produced in gridded form, facilitating an investigation of global scale direct aerosol forcing. The new gridded version (dubbed FSW) has a spacing of 1 at the Equator. A companion document (Rutan et al. 2005) focuses on advances to (and validation of) the ungridded, footprint scale calculations (dubbed CRS), primarily in clear-sky conditions. While mainly intended to provide observations of fluxes at the top of atmosphere (TOA), CERES (Wielicki et al. 1996) includes a program to also compute the fluxes at TOA, within the atmosphere and at the surface, and also to validate the results with independent ground based measurements (Charlock and Alberta 1996). ARM surface data has been a focus for this component of CERES. To permit the user to infer cloud forcing and direct aerosol forcing with the computed SARB, CERES includes surface and TOA fluxes that have been computed for cloud-free (clear) and aerosol free (pristine) footprints; this accounts for aerosol effects (SW scattering and absorption, and LW scattering, absorption and emission) to both clear and cloudy skies

    Neutrino Mass Texture with Large Mixing

    Full text link
    We propose a simple texture for the right-handed Majorana mass matrix to give a large νμ−ντ\nu_\mu-\nu_\tau mixing angle and hierarchical left-handed neutrino mass pattern. Consistently with the Dirac mass texture of the quark sector realizing the CKM mixing, this naturally explains the recent experimental results on both the atmospheric neutrino anomaly observed by the Superkamiokande collaboration and the solar neutrino problem. In this texture the right-handed Majorana mass of the third generation is of the order of GUT scale, which is favorable for reproducing the observed bottom-tau mass ratio.Comment: 10 pages, LaTeX, comments and references adde

    Prognostic factors for chronic headache: A systematic review

    Get PDF
    OBJECTIVE: To identify predictors of prognosis and trial outcomes in prospective studies of people with chronic headache. METHODS: This was a systematic review of published literature in peer-reviewed journals. We included (1) randomized controlled trials (RCTs) of interventions for chronic headache that reported subgroup analyses and (2) prospective cohort studies, published in English, since 1980. Participants included adults with chronic headache (including chronic headache, chronic migraine, and chronic tension-type headache with or without medication overuse headache). We searched key databases using free text and MeSH terms. Two reviewers independently extracted data and assessed the methodologic quality of studies and overall quality of evidence identified using appropriate published checklists. RESULTS: We identified 16,556 titles, removed 663 duplicates, and reviewed 199 articles, of which 27 were included in the review-17 prospective cohorts and 10 RCTs with subgroup analyses reported. There was moderate-quality evidence indicating that depression, anxiety, poor sleep and stress, medication overuse, and poor self-efficacy for managing headaches are potential prognostic factors for poor prognosis and unfavorable outcomes from preventive treatment in chronic headache. There was inconclusive evidence about treatment expectations, age, age at onset, body mass index, employment, and several headache features. CONCLUSIONS: This review identified several potential predictors of poor prognosis and worse outcome postinterventions in people with chronic headache. The majority of these are modifiable. The findings also highlight the need for more longitudinal high-quality research of prognostic factors in chronic headache
    • …
    corecore