6,029 research outputs found

    Problems with kinematic mean field electrodynamics at high magnetic Reynolds numbers

    Full text link
    We discuss the applicability of the kinematic α\alpha-effect formalism at high magnetic Reynolds numbers. In this regime the underlying flow is likely to be a small-scale dynamo, leading to the exponential growth of fluctuations. Difficulties arise with both the actual calculation of the α\alpha coefficients and with its interpretation. We argue that although the former may be circumvented -- and we outline several procedures by which the the α\alpha coefficients can be computed in principle -- the interpretation of these quantities in terms of the evolution of the large-scale field may be fundamentally flawed.Comment: 5 pages, LaTeX, no figure

    Observable signals in a string inspired axion-dilaton background and Randall-Sundrum scenario

    Full text link
    Rotation angle of the plane of polarization of the distant galactic radio waves has been estimated in a string inspired axion-dilaton background. It is found that the axion,dual to the field strength of the second rank antisymmetric massless Kalb-Ramond field in the string spectrum, produces a wavelength independent optical rotation which is much larger than that produced by the dilaton. Detection of such rotation has been reported in some recent cosmological experiments. The observed value has been compared with our estimated theoretical value following various cosmological constraints. The effects of warped extra dimensions in a braneworld scenario on such an optical rotation have been investigated.Comment: 17 Pages, Latex, article revised, To appear in Physical Review

    Three-coordinate iron(II) expanded ring N-heterocyclic carbene complexes

    Get PDF
    A sterically demanding seven-membered expanded ring N-heterocyclic carbene (NHC) ligand allows access to rare examples of three-coordinate iron(II)-NHC complexes incorporating only halide coligands of the general formula [Fe(NHC)X 2 ] (NHC = 7-DiPP; X = Br (1) Cl (2)). Reducing the steric influence of the ancillary NHC ligand through modulation of the N-aryl substituents leads to either four- or three-coordinate complexes of the general formula [Fe(NHC)Br 2 (THF)] (3) or [Fe(NHC)Br 2 ] (4) (NHC = 7-Mes), dependent upon the solvent of recrystallization. The further reduction of NHC steric influence results in four-coordinate geometries at iron in the form of the dimeric species [Fe(NHC)Br(μ-Br)] 2 (5) or [Fe(NHC)Br 2 (THF)] (6) (NHC = SDiPP), again dependent upon the solvent of recrystallization. Compounds 1-6 have been analyzed by 1 H NMR spectroscopy, X-ray crystallography, elemental microanalysis, Mössbauer spectroscopy (for 1 and 3-5), and Evans method magnetic susceptibility. In addition to these measurements the three-coordinate species 1 and 4 have been further analyzed by SQUID magnetometry and CASSCF calculations, which show significant magnetic anisotropy that is extremely sensitive to the coordination geometry

    Layer-specific programs of development in neocortical projection neurons.

    Full text link

    Stabilizing Heteroscedastic Noise With the Generalized Anscombe Transform. Application to Accurate Prediction of the Resolution in Displacement and Strain Maps Obtained With the Grid Method.

    Get PDF
    International audienceThe objective of this paper is to show that it is possible to predict the noise level in displacement and strain maps obtained with the grid method, but that actual noise of camera sensors being heteroscedastic, it is necessary to stabilize this noise in grid images prior to employing the predicting formulas. The procedure used for this purpose relies on the Generalized Anscombe Transform. This transform is first described. It is then shown that experimental and theoretical resolutions in strain maps obtained with the grid method are in good agreement when this transform is employed

    Turbulent dynamo with advective magnetic helicity flux

    Full text link
    Many astrophysical bodies harbor magnetic fields that are thought to be sustained by a dynamo process. However, it has been argued that the production of large-scale magnetic fields by mean-field dynamo action is strongly suppressed at large magnetic Reynolds numbers owing to the conservation of magnetic helicity. This phenomenon is known as {\it catastrophic quenching}. Advection of magnetic fields by stellar and galactic winds toward the outer boundaries and away from the dynamo is expected to alleviate such quenching. Here we explore the relative roles played by advective and turbulent--diffusive fluxes of magnetic helicity in the dynamo. In particular, we study how the dynamo is affected by advection. We do this by performing direct numerical simulations of a turbulent dynamo of α2\alpha^2 type driven by forced turbulence in a Cartesian domain in the presence of a flow away from the equator where helicity changes sign. Our results indicate that in the presence of advection, the dynamo, otherwise stationary, becomes oscillatory. We confirm an earlier result for turbulent--diffusive magnetic helicity fluxes that for small magnetic Reynolds numbers (\Rm\lesssim 100...200, based on the wavenumber of the energy-carrying eddies) the magnetic helicity flux scales less strongly with magnetic Reynolds number (\Rm^{-1/2}) than the term describing magnetic helicity destruction by resistivity (\Rm^{-1}). Our new results now suggest that for larger \Rm the former becomes approximately independent of \Rm, while the latter falls off more slowly. We show for the first time that both for weak and stronger winds, the magnetic helicity flux term becomes comparable to the resistive term for \Rm\gtrsim 1000, which is necessary for alleviating catastrophic quenching.Comment: 9 pages, 9 figures, accepted for publication in MNRA

    The universe dynamics in the tachyon cosmology with non-minimal coupling to matter

    Full text link
    Recently, the tachyon cosmology has been represented as dark energy model to support the current acceleration of the universe without phantom crossing. In this paper, we study the dynamics of the tachyon cosmology in which the field plays the role of tachyon field and also non--minimally coupled to the matter lagrangian. The model shows current universe acceleration and also phantom crossing in the future. Two cosmological tests are also performed to validate the model; the difference in the distance modulus and the model independent Cosmological Redshift Drift (CRD) test.Comment: 14 pages, 11 figure

    Kinematic alpha effect in isotropic turbulence simulations

    Full text link
    Using numerical simulations at moderate magnetic Reynolds numbers up to 220 it is shown that in the kinematic regime, isotropic helical turbulence leads to an alpha effect and a turbulent diffusivity whose values are independent of the magnetic Reynolds number, \Rm, provided \Rm exceeds unity. These turbulent coefficients are also consistent with expectations from the first order smoothing approximation. For small values of \Rm, alpha and turbulent diffusivity are proportional to \Rm. Over finite time intervals meaningful values of alpha and turbulent diffusivity can be obtained even when there is small-scale dynamo action that produces strong magnetic fluctuations. This suggests that small-scale dynamo-generated fields do not make a correlated contribution to the mean electromotive force.Comment: Accepted for publication in MNRAS Letter

    Thin-shell wormholes from charged black holes in generalized dilaton-axion gravity

    Full text link
    This paper discusses a new type of thin-shell wormhole constructed by applying the cut-and-paste technique to two copies of a charged black hole in generalized dilaton-axion gravity, which was inspired by low-energy string theory. After analyzing various aspects of this thin-shell wormhole, we discuss its stability to linearized spherically symmetric perturbations.Comment: Minor changes, 6 pages, 4 figures. Accepted for publication in Gen. Rel. Gra

    Determining optimal neighborhood size for ecological studies using leave-one-out cross validation

    Get PDF
    We employed a leave-one-out cross validation to determine optimally sized neighborhood. Variations between a single point and the other points within each filter size for all the points in the study area were evaluated, and the mean squared error (MSE) for each filter was calculated. The filter with the lowest MSE was considered as the optimal neighborhood. The method is useful in determining the optimal neighborhood for both geographic and population filters
    • …
    corecore