193 research outputs found

    Origin of magnetic moments and presence of a resonating valence bond state in Ba2_2YIrO6_6

    Get PDF
    While it was speculated that 5d4d^4 systems would possess non-magnetic JJ~=~0 ground state due to strong Spin-Orbit Coupling (SOC), all such systems have invariably shown presence of magnetic moments so far. A puzzling case is that of Ba2_2YIrO6_6, which in spite of having a perfectly cubic structure with largely separated Ir5+^{5+} (d4d^4) ions, has consistently shown presence of weak magnetic moments. Moreover, we clearly show from Muon Spin Relaxation (μ\muSR) measurements that a change in the magnetic environment of the implanted muons in Ba2_2YIrO6_6 occurs as temperature is lowered below 10~K. This observation becomes counterintuitive, as the estimated value of SOC obtained by fitting the RIXS spectrum of Ba2_2YIrO6_6 with an atomic jjj-j model is found to be as high as 0.39~eV, meaning that the system within this model is neither expected to possess moments nor exhibit temperature dependent magnetic response. Therefore we argue that the atomic jjj-j coupling description is not sufficient to explain the ground state of such systems, where despite having strong SOC, presence of hopping triggers delocalisation of holes, resulting in spontaneous generation of magnetic moments. Our theoretical calculations further indicate that these moments favour formation of spin-orbital singlets in the case of Ba2_2YIrO6_6, which is manifested in μ\muSR experiments measured down to 60~mK.Comment: 20 Pages, 7 Figure

    Electronic and Magnetic Structures of Sr2FeMoO6

    Get PDF
    We have investigated the electronic and magnetic structures of Sr2FeMoO6 employing site-specific direct probes, namely x-ray absorption spectroscopy with linearly and circularly polarized photons. In contrast to some previous suggestions, the results clearly establish that Fe is in the formal trivalent state in this compound. With the help of circularly polarized light, it is unambiguously shown that the moment at the Mo sites is below the limit of detection (< 0.25mu_B), resolving a previous controversy. We also show that the decrease of the observed moment in magnetization measurements from the theoretically expected value is driven by the presence of mis-site disorder between Fe and Mo sites.Comment: To appear in Physical Review Letter

    The Look-back Time Evolution of Far-Ultraviolet Flux from the Brightest Cluster Elliptical Galaxies at z < 0.2

    Get PDF
    We present the GALEX UV photometry of the elliptical galaxies in Abell clusters at moderate redshifts (z < 0.2) for the study of the look-back time evolution of the UV upturn phenomenon. The brightest elliptical galaxies (M_r < -22) in 12 remote clusters are compared with the nearby giant elliptical galaxies of comparable optical luminosity in the Fornax and Virgo clusters. The sample galaxies presented here appear to be quiescent without signs of massive star formation or strong nuclear activity, and show smooth, extended profiles in their UV images indicating that the far-UV (FUV) light is mostly produced by hot stars in the underlying old stellar population. Compared to their counterparts in nearby clusters, the FUV flux of cluster giant elliptical galaxies at moderate redshifts fades rapidly with ~ 2 Gyrs of look-back time, and the observed pace in FUV - V color evolution agrees reasonably well with the prediction from the population synthesis models where the dominant FUV source is hot horizontal-branch stars and their progeny. A similar amount of color spread (~ 1 mag) in FUV - V exists among the brightest cluster elliptical galaxies at z ~ 0.1, as observed among the nearby giant elliptical galaxies of comparable optical luminosity.Comment: Accepted for publication in the Special GALEX ApJ Supplement, December 200
    corecore