380 research outputs found

    A threshold phenomenon for embeddings of H0mH^m_0 into Orlicz spaces

    Full text link
    We consider a sequence of positive smooth critical points of the Adams-Moser-Trudinger embedding of H0mH^m_0 into Orlicz spaces. We study its concentration-compactness behavior and show that if the sequence is not precompact, then the liminf of the H0mH^m_0-norms of the functions is greater than or equal to a positive geometric constant.Comment: 14 Page

    Quantization for an elliptic equation of order 2m with critical exponential non-linearity

    Full text link
    On a smoothly bounded domain Ω⊂R2m\Omega\subset\R{2m} we consider a sequence of positive solutions uk⇁w0u_k\stackrel{w}{\rightharpoondown} 0 in Hm(Ω)H^m(\Omega) to the equation (−Δ)muk=λkukemuk2(-\Delta)^m u_k=\lambda_k u_k e^{mu_k^2} subject to Dirichlet boundary conditions, where 0<λk→00<\lambda_k\to 0. Assuming that Λ:=lim⁥k→∞∫Ωuk(−Δ)mukdx<∞,\Lambda:=\lim_{k\to\infty}\int_\Omega u_k(-\Delta)^m u_k dx<\infty, we prove that Λ\Lambda is an integer multiple of \Lambda_1:=(2m-1)!\vol(S^{2m}), the total QQ-curvature of the standard 2m2m-dimensional sphere.Comment: 33 page

    Multiple solutions of the quasirelativistic Choquard equation

    Get PDF
    We prove existence of multiple solutions to the quasirelativistic Choquard equation with a scalar potential

    The Construction of a Partially Regular Solution to the Landau-Lifshitz-Gilbert Equation in R2\mathbb{R}^2

    Full text link
    We establish a framework to construct a global solution in the space of finite energy to a general form of the Landau-Lifshitz-Gilbert equation in R2\mathbb{R}^2. Our characterization yields a partially regular solution, smooth away from a 2-dimensional locally finite Hausdorff measure set. This construction relies on approximation by discretization, using the special geometry to express an equivalent system whose highest order terms are linear and the translation of the machinery of linear estimates on the fundamental solution from the continuous setting into the discrete setting. This method is quite general and accommodates more general geometries involving targets that are compact smooth hypersurfaces.Comment: 43 pages, 2 figure

    Renormalization and blow up for charge one equivariant critical wave maps

    Full text link
    We prove the existence of equivariant finite time blow up solutions for the wave map problem from 2+1 dimensions into the 2-sphere. These solutions are the sum of a dynamically rescaled ground-state harmonic map plus a radiation term. The local energy of the latter tends to zero as time approaches blow up time. This is accomplished by first "renormalizing" the rescaled ground state harmonic map profile by solving an elliptic equation, followed by a perturbative analysis

    Existence of solutions to a higher dimensional mean-field equation on manifolds

    Full text link
    For m≄1m\geq 1 we prove an existence result for the equation (−Δg)mu+λ=λe2mu∫Me2mudÎŒg(-\Delta_g)^m u+\lambda=\lambda\frac{e^{2mu}}{\int_M e^{2mu}d\mu_g} on a closed Riemannian manifold (M,g)(M,g) of dimension 2m2m for certain values of λ\lambda.Comment: 15 Page

    Separation of isomeric glycans by ion mobility spectrometry–the impact of fluorescent labelling

    Get PDF
    The analysis of complex oligosaccharides is traditionally based on multidimensional workflows where liquid chromatography is coupled to tandem mass spectrometry (LC-MS/MS). Due to the presence of multiple isomers, which cannot be distinguished easily using tandem MS, a detailed structural elucidation is still challenging in many cases. Recently, ion mobility spectrometry (IMS) showed great potential as an additional structural parameter in glycan analysis. While the time-scale of the IMS separation is fully compatible to that of LC-MS-based workflows, there are very few reports in which both techniques have been directly coupled for glycan analysis. As a result, there is little knowledge on how the derivatization with fluorescent labels as common in glycan LC-MS affects the mobility and, as a result, the selectivity of IMS separations. Here, we address this problem by systematically analyzing six isomeric glycans derivatized with the most common fluorescent tags using ion mobility spectrometry. We report >150 collision cross-sections (CCS) acquired in positive and negative ion mode and compare the quality of the separation for each derivatization strategy. Our results show that isomer separation strongly depends on the chosen label, as well as on the type of adduct ion. In some cases, fluorescent labels significantly enhance peak-to-peak resolution which can help to distinguish isomeric specie

    On Singularity formation for the L^2-critical Boson star equation

    Full text link
    We prove a general, non-perturbative result about finite-time blowup solutions for the L2L^2-critical boson star equation i∂tu=−Δ+m2 u−(∣x∣−1∗∣u∣2)ui\partial_t u = \sqrt{-\Delta+m^2} \, u - (|x|^{-1} \ast |u|^2) u in 3 space dimensions. Under the sole assumption that the solution blows up in H1/2H^{1/2} at finite time, we show that u(t)u(t) has a unique weak limit in L2L^2 and that ∣u(t)∣2|u(t)|^2 has a unique weak limit in the sense of measures. Moreover, we prove that the limiting measure exhibits minimal mass concentration. A central ingredient used in the proof is a "finite speed of propagation" property, which puts a strong rigidity on the blowup behavior of uu. As the second main result, we prove that any radial finite-time blowup solution uu converges strongly in L2L^2 away from the origin. For radial solutions, this result establishes a large data blowup conjecture for the L2L^2-critical boson star equation, similar to a conjecture which was originally formulated by F. Merle and P. Raphael for the L2L^2-critical nonlinear Schr\"odinger equation in [CMP 253 (2005), 675-704]. We also discuss some extensions of our results to other L2L^2-critical theories of gravitational collapse, in particular to critical Hartree-type equations.Comment: 24 pages. Accepted in Nonlinearit

    \epsilon-regularity for systems involving non-local, antisymmetric operators

    Full text link
    We prove an epsilon-regularity theorem for critical and super-critical systems with a non-local antisymmetric operator on the right-hand side. These systems contain as special cases, Euler-Lagrange equations of conformally invariant variational functionals as Rivi\`ere treated them, and also Euler-Lagrange equations of fractional harmonic maps introduced by Da Lio-Rivi\`ere. In particular, the arguments presented here give new and uniform proofs of the regularity results by Rivi\`ere, Rivi\`ere-Struwe, Da-Lio-Rivi\`ere, and also the integrability results by Sharp-Topping and Sharp, not discriminating between the classical local, and the non-local situations

    Analysis of Nematic Liquid Crystals with Disclination Lines

    Full text link
    We investigate the structure of nematic liquid crystal thin films described by the Landau--de Gennes tensor-valued order parameter with Dirichlet boundary conditions of nonzero degree. We prove that as the elasticity constant goes to zero a limiting uniaxial texture forms with disclination lines corresponding to a finite number of defects, all of degree 1/2 or all of degree -1/2. We also state a result on the limiting behavior of minimizers of the Chern-Simons-Higgs model without magnetic field that follows from a similar proof.Comment: 40 pages, 1 figur
    • 

    corecore