190 research outputs found

    Network Cosmology

    Full text link
    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology

    Mesoscopic structure and social aspects of human mobility

    Get PDF
    The individual movements of large numbers of people are important in many contexts, from urban planning to disease spreading. Datasets that capture human mobility are now available and many interesting features have been discovered, including the ultra-slow spatial growth of individual mobility. However, the detailed substructures and spatiotemporal flows of mobility - the sets and sequences of visited locations - have not been well studied. We show that individual mobility is dominated by small groups of frequently visited, dynamically close locations, forming primary "habitats" capturing typical daily activity, along with subsidiary habitats representing additional travel. These habitats do not correspond to typical contexts such as home or work. The temporal evolution of mobility within habitats, which constitutes most motion, is universal across habitats and exhibits scaling patterns both distinct from all previous observations and unpredicted by current models. The delay to enter subsidiary habitats is a primary factor in the spatiotemporal growth of human travel. Interestingly, habitats correlate with non-mobility dynamics such as communication activity, implying that habitats may influence processes such as information spreading and revealing new connections between human mobility and social networks.Comment: 7 pages, 5 figures (main text); 11 pages, 9 figures, 1 table (supporting information

    Modeling Adversarial Behavior Against Mobility Data Privacy

    Get PDF
    Privacy risk assessment is a crucial issue in any privacy-aware analysis process. Traditional frameworks for privacy risk assessment systematically generate the assumed knowledge for a potential adversary, evaluating the risk without realistically modelling the collection of the background knowledge used by the adversary when performing the attack. In this work, we propose Simulated Privacy Annealing (SPA), a new adversarial behavior model for privacy risk assessment in mobility data. We model the behavior of an adversary as a mobility trajectory and introduce an optimization approach to find the most effective adversary trajectory in terms of privacy risk produced for the individuals represented in a mobility data set. We use simulated annealing to optimize the movement of the adversary and simulate a possible attack on mobility data. We finally test the effectiveness of our approach on real human mobility data, showing that it can simulate the knowledge gathering process for an adversary in a more realistic way

    Human mobility from theory to practice: Data, models and applications

    Get PDF
    The inclusion of tracking technologies in personal devices opened the doors to the analysis of large sets of mobility data like GPS traces and call detail records. This tutorial presents an overview of both modeling principles of human mobility and machine learning models applicable to specific problems. We review the state of the art of five main aspects in human mobility: (1) human mobility data landscape; (2) key measures of individual and collective mobility; (3) generative models at the level of individual, population and mixture of the two; (4) next location prediction algorithms; (5) applications for social good. For each aspect, we show experiments and simulations using the Python library "scikit-mobility" developed by the presenters of the tutorial

    Emergence of structural and dynamical properties of ecological mutualistic networks

    Full text link
    Mutualistic networks are formed when the interactions between two classes of species are mutually beneficial. They are important examples of cooperation shaped by evolution. Mutualism between animals and plants plays a key role in the organization of ecological communities. Such networks in ecology have generically evolved a nested architecture independent of species composition and latitude - specialists interact with proper subsets of the nodes with whom generalists interact. Despite sustained efforts to explain observed network structure on the basis of community-level stability or persistence, such correlative studies have reached minimal consensus. Here we demonstrate that nested interaction networks could emerge as a consequence of an optimization principle aimed at maximizing the species abundance in mutualistic communities. Using analytical and numerical approaches, we show that because of the mutualistic interactions, an increase in abundance of a given species results in a corresponding increase in the total number of individuals in the community, as also the nestedness of the interaction matrix. Indeed, the species abundances and the nestedness of the interaction matrix are correlated by an amount that depends on the strength of the mutualistic interactions. Nestedness and the observed spontaneous emergence of generalist and specialist species occur for several dynamical implementations of the variational principle under stationary conditions. Optimized networks, while remaining stable, tend to be less resilient than their counterparts with randomly assigned interactions. In particular, we analytically show that the abundance of the rarest species is directly linked to the resilience of the community. Our work provides a unifying framework for studying the emergent structural and dynamical properties of ecological mutualistic networks.Comment: 10 pages, 4 figure

    The spatial resolution of epidemic peaks

    Get PDF
    The emergence of novel respiratory pathogens can challenge the capacity of key health care resources, such as intensive care units, that are constrained to serve only specific geographical populations. An ability to predict the magnitude and timing of peak incidence at the scale of a single large population would help to accurately assess the value of interventions designed to reduce that peak. However, current disease-dynamic theory does not provide a clear understanding of the relationship between: epidemic trajectories at the scale of interest (e.g. city); population mobility; and higher resolution spatial effects (e.g. transmission within small neighbourhoods). Here, we used a spatially-explicit stochastic meta-population model of arbitrary spatial resolution to determine the effect of resolution on model-derived epidemic trajectories. We simulated an influenza-like pathogen spreading across theoretical and actual population densities and varied our assumptions about mobility using Latin-Hypercube sampling. Even though, by design, cumulative attack rates were the same for all resolutions and mobilities, peak incidences were different. Clear thresholds existed for all tested populations, such that models with resolutions lower than the threshold substantially overestimated population-wide peak incidence. The effect of resolution was most important in populations which were of lower density and lower mobility. With the expectation of accurate spatial incidence datasets in the near future, our objective was to provide a framework for how to use these data correctly in a spatial meta-population model. Our results suggest that there is a fundamental spatial resolution for any pathogen-population pair. If underlying interactions between pathogens and spatially heterogeneous populations are represented at this resolution or higher, accurate predictions of peak incidence for city-scale epidemics are feasible

    Human mobility: Models and applications

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordRecent years have witnessed an explosion of extensive geolocated datasets related to human movement, enabling scientists to quantitatively study individual and collective mobility patterns, and to generate models that can capture and reproduce the spatiotemporal structures and regularities in human trajectories. The study of human mobility is especially important for applications such as estimating migratory flows, traffic forecasting, urban planning, and epidemic modeling. In this survey, we review the approaches developed to reproduce various mobility patterns, with the main focus on recent developments. This review can be used both as an introduction to the fundamental modeling principles of human mobility, and as a collection of technical methods applicable to specific mobility-related problems. The review organizes the subject by differentiating between individual and population mobility and also between short-range and long-range mobility. Throughout the text the description of the theory is intertwined with real-world applications.US Army Research Offic

    Developing capacity in health informatics in a resource poor setting: lessons from Peru

    Get PDF
    The public sectors of developing countries require strengthened capacity in health informatics. In Peru, where formal university graduate degrees in biomedical and health informatics were lacking until recently, the AMAUTA Global Informatics Research and Training Program has provided research and training for health professionals in the region since 1999. The Fogarty International Center supports the program as a collaborative partnership between Universidad Peruana Cayetano Heredia in Peru and the University of Washington in the United States of America. The program aims to train core professionals in health informatics and to strengthen the health information resource capabilities and accessibility in Peru. The program has achieved considerable success in the development and institutionalization of informatics research and training programs in Peru. Projects supported by this program are leading to the development of sustainable training opportunities for informatics and eight of ten Peruvian fellows trained at the University of Washington are now developing informatics programs and an information infrastructure in Peru. In 2007, Universidad Peruana Cayetano Heredia started offering the first graduate diploma program in biomedical informatics in Peru
    corecore