30 research outputs found

    Warming drove the Expansion of Marine Anoxia in the Equatorial Atlantic during the Cenomanian Leading up to Oceanic Anoxic Event 2

    Get PDF
    Oceanic Anoxic Event (OAE) 2 (~93.5 millions of years ago) is characterized by widespread marine anoxia and elevated burial rates of organic matter. However, the factors that led to this widespread marine deoxygenation and the possible link with climatic change remain debated. Here, we report long-term biomarker records of water column anoxia, water column and photic zone euxinia (PZE), and sea surface temperature (SST) from Demerara Rise in the equatorial Atlantic that span 3.8 million years of the late Cenomanian to Turonian, including OAE 2. We find that total organic carbon (TOC) contents are high but variable (0.41&ndash;17 wt. %) across the Cenomanian and increase with time. This long-term TOC increase coincides with a TEX86-derived SST increase from ~ 35 to 40 &deg;C as well as the episodic occurrence of 28,30-dinorhopane (DNH) and lycopane, indicating warming and expansion of the oxygen minimum zone (OMZ) predating OAE 2. Water column euxinia persisted through much of the late Cenomanian, as indicated by the presence of C35 hopanoid thiophene, but only reached the photic zone during OAE 2, as indicated by the presence of isorenieratane. Using these biomarker records, we suggest that water column anoxia and euxinia in the equatorial Atlantic preceded OAE 2 and this deoxygenation was driven by global warming.</p

    Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet)

    Get PDF
    Glaciers and ice sheets host abundant and dynamic communities of microorganisms on the ice surface (supraglacial environments). Recently, it has been shown that Streptophyte glacier algae blooming on the surface ice of the south-western coast of the Greenland Ice Sheet are a significant contributor to the 15-year marked decrease in albedo. Currently, little is known about the constraints, such as nutrient availability, on this large-scale algal bloom. In this study, we investigate the relative abundances of dissolved inorganic and dissolved organic macronutrients (N and P) in these darkening surface ice environments. Three distinct ice surfaces, with low, medium and high visible impurity loadings, supraglacial stream water and cryoconite hole water, were sampled. Our results show a clear dominance of the organic phase in all ice surface samples containing low, medium and high visible impurity loadings, with 93% of the total dissolved nitrogen and 67% of the total dissolved phosphorus in the organic phase. Mean concentrations in low, medium and high visible impurity surface ice environments are 0.91, 0.62 and 1.0μM for dissolved inorganic nitrogen (DIN), 5.1, 11 and 14μM for dissolved organic nitrogen (DON), 0.03, 0.07 and 0.05μM for dissolved inorganic phosphorus (DIP) and 0.10, 0.15 and 0.12μM for dissolved organic phosphorus (DOP), respectively. DON concentrations in all three surface ice samples are significantly higher than DON concentrations in supraglacial streams and cryoconite hole water (0 and 0.7 μM, respectively). DOP concentrations are higher in all three surface ice samples compared to supraglacial streams and cryoconite hole water (0.07μM for both). Dissolved organic carbon (DOC) concentrations increase with the amount of visible impurities present (low: 83 μM, medium: 173μM and high: 242 μM) and are elevated compared to supraglacial streams and cryoconite hole water (30 and 50 μM, respectively). We speculate that the architecture of the weathering crust, which impacts on water flow paths and storage in the melting surface ice and/or the production of extracellular polymeric substances (EPS), containing both N and P in conjunction with C, is responsible for the temporary retention of DON and DOP in the melting surface ice. The unusual presence of measurable DIP and DIN, principally as NHC 4 , in the melting surface ice environments suggests that factors other than macronutrient limitation are controlling the extent and magnitude of the glacier algae

    Constant elasticity of substitution functions for energy modeling in general equilibrium integrated assessment models:a critical review and recommendations

    Get PDF
    Applying constant elasticity of substitution (CES) functions in general equilibrium integrated assessment models (GE-IAMs) for the substitution of technical factor inputs (e.g., replacing fossil fuels) fails to match historically observed patterns in energy transition dynamics. This method of substitution is also very sensitive to the structure of CES implementation (nesting) and parameter choice. The resulting methodology-related artifacts are (i) the extension of the status quo technology shares for future energy supply relying on fossil fuels with carbon capture, biomass, and nuclear; (ii) monotonically increasing marginal abatement costs of carbon; and (iii) substitution of energy with non-physical inputs (e.g., knowledge and capital) without conclusive evidence that this is possible to the extent modeled. We demonstrate these issues using simple examples and analyze how they are relevant in the case of four major CES-based GE-IAMs. To address this, we propose alternative formulations either by opting for carefully applied perfect substitution for alternative energy options or by introducing dynamically variable elasticity of substitution as a potential intermediate solution. Nevertheless, complementing the economic analysis with physical modeling accounting for storage and resource availability at a high resolution spatially and temporally would be preferable

    Isotopic techniques to measure N2O, N2 and their sources

    Get PDF
    GHG emissions are usually the result of several simultaneous processes. Furthermore, some gases such as N2 are very difficult to quantify and require special techniques. Therefore, in this chapter, the focus is on stable isotope methods. Both natural abundance techniques and enrichment techniques are used. Especially in the last decade, a number of methodological advances have been made. Thus, this chapter provides an overview and description of a number of current state-of-theart techniques, especially techniques using the stable isotope 15N. Basic principles and recent advances of the 15N gas flux method are presented to quantify N2 fluxes, but also the latest isotopologue and isotopomer methods to identify pathways for N2O production. The second part of the chapter is devoted to 15N tracing techniques, the theoretical background and recent methodological advances. A range of different methods is presented from analytical to numerical tools to identify and quantify pathway-specific N2O emissions. While this chapter is chiefly concerned with gaseous N emissions, a lot of the techniques can also be applied to other gases such as methane (CH4), as outlined in Sect. 5.3

    Denitrification and greenhouse gas emissions in natural and semi-natural terrestrial ecosystems [LTLS]

    No full text
    Ullah, S.; Sgouridis, F. (2017). Denitrification and greenhouse gas emissions in natural and semi-natural terrestrial ecosystems [LTLS]. NERC Environmental Information Data Centre. https://doi.org/10.5285/d970c095-129a-41ac-9c82-950ab780458

    Characterization of the key pathways of dissimilatory nitrate reduction and their response to complex organic substrates in hyporheic sediments

    No full text
    ABSTRACT: Laboratory incubations with river-bed sediment collected from riffles and pools were used to quantify potential pathways of dissimilatory nitrate reduction in the hyporheic zone of a groundwater-fed river. Sediments collected from between 5-cm and 86-cm depth in the bed of the River Leith, Cumbria, United Kingdom, were incubated with a suite of 15N-labeled substrates (15NO-3, 15NH&plus;4, and 14NO-3) to quantify nitrate reduction via denitrification, dissimilatory nitrate reduction to ammonium (DNRA), and anaerobic ammonium oxidation (anammox). Denitrification was the dominant pathway of dissimilatory nitrate reduction in the hyporheic sediments, although recovery of 15N from the ammonium pool indicated that DNRA was also active. The potential for anammox was confirmed by the production of 29N2 during the 15NH&plus;4 and 14NO-3 incubation, but it was much smaller than denitrification. Potential rates of denitrification were highest in shallow sediments and decayed exponentially with depth thereafter. There were clear differences in denitrification activity between riffle and pool sediments. After the production of 15N-N2 had stabilized, we added a spike of bacteriological peptone to determine the effect of complex organic substrates on denitrification potential. The potential rate of denitrification increased uniformly at all sediment depths but the total amount of denitrification fueled by the organic substrates decreased markedly with depth, from 90% in the shallow sediments to 30% in the deepest sediments. In addition, a considerable fraction of the 15NO-3 could not be accounted for, which suggested that up to 87% of it had been assimilated in the deepest sediments
    corecore