1,303 research outputs found

    Sperm competition in yellow dung flies: No consistent effect of sperm size

    Full text link
    The male competition for fertilization that results from female multiple mating promotes the evolution of increased sperm numbers and can impact sperm morphology, with theory predicting that longer sperm can at times be advantageous during sperm competition. If so, males with longer sperm should sire more offspring than competitors with shorter sperm. Few studies have directly tested this prediction, and findings are inconsistent. Here we assessed whether longer sperm provide a competitive advantage in the yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae). Initially, we let brothers with different temperature-mediated mean sperm lengths compete – thus minimizing confounding effects of genetic background – and found no clear advantage of longer sperm. We then used flies from lines subjected to bidirectional selection on phenoloxidase activity that had shown correlated evolutionary responses in sperm and female spermathecal duct lengths. This experiment also yielded no main effect of sperm size on siring success. Instead, there was a trend for a shorter-sperm advantage, but only when competing in females with longer spermathecal ducts. Our data corroborated many previously reported findings (last-male precedence, effects of copula duration and body size), suggesting our failure to find sperm size effects is not inherently due to our experimental protocols. We conclude that longer sperm are not competitively superior in yellow dung flies under most circumstances, and that, consistent with previous work, in this species competitive fertilization success is primarily determined by the relative numbers of sperm competing

    Circulating Cell-Free DNA in Dogs with Mammary Tumors: Short and Long Fragments and Integrity Index

    Get PDF
    Circulating cell-free DNA (cfDNA) has been considered an interesting diagnostic/prognostic plasma biomarker in tumor-bearing subjects. In cancer patients, cfDNA can hypothetically derive from tumor necrosis/apoptosis, lysed circulating cells, and some yet unrevealed mechanisms of active release. This study aimed to preliminarily analyze cfDNA in dogs with canine mammary tumors (CMTs). Forty-four neoplastic, 17 non-neoplastic disease-bearing, and 15 healthy dogs were recruited. Necrosis and apoptosis were also assessed as potential source of cfDNA on 78 CMTs diagnosed from the 44 dogs. The cfDNA fragments and integrity index significantly differentiated neoplastic versus non-neoplastic dogs (P<0.05), and allowed the distinction between benign and malignant lesions (P<0.05). Even if without statistical significance, the amount of cfDNA was also affected by tumor necrosis and correlated with tumor size and apoptotic markers expression. A significant (P<0.01) increase of Bcl-2 in malignant tumors was observed, and in metastatic CMTs the evasion of apoptosis was also suggested. This study, therefore, provides evidence that cfDNA could be a diagnostic marker in dogs carrying mammary nodules suggesting that its potential application in early diagnostic procedures should be further investigated

    Decreased serum cell-free DNA levels in rheumatoid arthritis

    Get PDF
    Purpose: Recent studies have demonstrated that serum/plasma DNA and RNA molecules in addition to proteins can serve as biomarkers. Elevated levels of these nucleic acids have been found not only in acute, but also in chronic conditions, including autoimmune diseases. The aim of this study was to assess cell-free DNA (cfDNA) levels in sera of rheumatoid arthritis (RA) patients compared to controls. Methods: cfDNA was extracted from sera of patients with early and established RA, relapsing-remitting multiple sclerosis patients (RRMS) and healthy subjects, and its concentration was determined by quantitative PCR using two amplicons, Alu115 and β-actin205, corresponding to Alu repetitive elements and the β-actin single-copy gene, respectively. Serum DNase activity was measured by a single radial enzyme diffusion method. Results: Reduced levels of cfDNA were observed in patients with establi

    Co-Transport of Polycyclic Aromatic Hydrocarbons by Motile Microorganisms Leads to Enhanced Mass Transfer under Diffusive Conditions.

    Get PDF
    The environmental chemodynamics of hydrophobic organic chemicals (HOCs) are often rate-limited by diffusion in stagnant boundary layers. This study investigated whether motile microorganisms can act as microbial carriers that enhance mass transfer of HOCs through diffusive boundary layers. A new experimental system was developed that allows (1) generation of concentration gradients of HOCs under the microscope, (2) exposure and direct observation of microorganisms in such gradients, and (3) quantification of HOC mass transfer. Silicone O-rings were integrated into a Dunn chemotaxis chamber to serve as sink and source for polycyclic aromatic hydrocarbons (PAHs). This resulted in stable concentration gradients in water (>24 h). Adding the model organism <i>Tetrahymena pyriformis</i> to the experimental system enhanced PAH mass transfer up to hundred-fold (benzo­[a]­pyrene). Increasing mass transfer enhancement with hydrophobicity indicated PAH co-transport with the motile organisms. Fluorescence microscopy confirmed such transport. The effective diffusivity of <i>T. pyriformis</i>, determined by video imaging microscopy, was found to exceed molecular diffusivities of the PAHs up to four-fold. Cell-bound PAH fractions were determined to range from 28% (naphthalene) to 92% (pyrene). Motile microorganisms can therefore function as effective carriers for HOCs under diffusive conditions and might significantly enhance mobility and availability of HOCs

    Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by Methyl-CpG binding proteins and histone modifications

    Get PDF
    <p>Abstract</p> <p><it>Background</it></p> <p>The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs) and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation.</p> <p><it>Methods</it></p> <p>In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies.</p> <p><it>Results</it></p> <p>Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3) at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR.</p> <p><it>Conclusions</it></p> <p>This study is one of the first to reveal the histone code and MBD profile at the promoters of CD44, Cyclin D2, GLIPR1 and PTEN in different tumour cells and associated changes after stimulation with methylation inhibitor 5-aza-CdR.</p

    Naturalised Vitis Rootstocks in Europe and Consequences to Native Wild Grapevine

    Get PDF
    The genus Vitis is represented by several coexisting species in Europe. Our study focuses on naturalised rootstocks that originate in viticulture. The consequences of their presence to the landscape and to native European species (Vitis vinifera ssp. silvestris) are evaluated. This study compares ecological traits (seven qualitative and quantitative descriptors) and the genetic diversity (10 SSR markers) of populations of naturalised rootstocks and native wild grapevines. 18 large naturalised rootstock populations were studied in the Rhône watershed. Wild European grapevines are present in four main habitats (screes, alluvial forests, hedges, and streamside hedges). In contrast, naturalised rootstock populations are mainly located in alluvial forests, but they clearly take advantage of alluvial system dynamics and connectivity at the landscape level. These latter populations appear to reproduce sexually, and show a higher genetic diversity than Vitis vinifera ssp. silvestris. The regrouping of naturalised rootstocks in interconnected populations tends to create active hybrid swarms of rootstocks. The rootstocks show characters of invasive plants. The spread of naturalised rootstocks in the environment, the acceleration of the decline of the European wild grapevine, and the propagation of genes of viticultural interest in natural populations are potential consequences that should be kept in mind when undertaking appropriate management measures

    Mechanical and kinetic effects of shortened tropomyosin reconstituted into myofibrils

    Get PDF
    The effects of tropomyosin on muscle mechanics and kinetics were examined in skeletal myofibrils using a novel method to remove tropomyosin (Tm) and troponin (Tn) and then replace these proteins with altered versions. Extraction employed a low ionic strength rigor solution, followed by sequential reconstitution at physiological ionic strength with Tm then Tn. SDS-PAGE analysis was consistent with full reconstitution, and fluorescence imaging after reconstitution using Oregon-green-labeled Tm indicated the expected localization. Myofibrils remained mechanically viable: maximum isometric forces of myofibrils after sTm/sTn reconstitution (control) were comparable (~84%) to the forces generated by non-reconstituted preparations, and the reconstitution minimally affected the rate of isometric activation (kact), calcium sensitivity (pCa50), and cooperativity (nH). Reconstitutions using various combinations of cardiac and skeletal Tm and Tn indicated that isoforms of both Tm and Tn influence calcium sensitivity of force development in opposite directions, but the isoforms do not otherwise alter cross-bridge kinetics. Myofibrils reconstituted with Δ23Tm, a deletion mutant lacking the second and third of Tm’s seven quasi-repeats, exhibited greatly depressed maximal force, moderately slower kact rates and reduced nH. Δ23Tm similarly decreased the cooperativity of calcium binding to the troponin regulatory sites of isolated thin filaments in solution. The mechanisms behind these effects of Δ23Tm also were investigated using Pi and ADP jumps. Pi and ADP kinetics were indistinguishable in Δ23Tm myofibrils compared to controls. The results suggest that the deleted region of tropomyosin is important for cooperative thin filament activation by calcium
    corecore