9 research outputs found

    Correlation of gene expression and protein production rate - a system wide study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growth rate is a major determinant of intracellular function. However its effects can only be properly dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on <it>Saccharomyces cerevisiae </it>chemostat cultivations provided the first analysis on genome wide effects of growth rate. In this work we study the filamentous fungus <it>Trichoderma reesei </it>(<it>Hypocrea jecorina</it>) that is an industrial protein production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate protein production phenotype.</p> <p>Results</p> <p>We have used transcriptomics and proteomics to study the effect of growth rate and cell density on protein production in chemostat cultivations of <it>T. reesei</it>. Use of chemostat allowed control of growth rate and exact estimation of the extracellular specific protein production rate (SPPR). We find that major biosynthetic activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this response.</p> <p>Conclusions</p> <p>Based on these results it appears that in low growth rate protein production energy is very efficiently used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more fundamental determining factor than growth rate for low growth rate protein production and we propose a novel eukaryotic response to this i.e. the lineage specific response (LSR).</p

    First Full Beta-Strength Measurement With Dtas Across N=126 at Fair Phase-0

    No full text
    An experiment was performed at GSI with the objective of measuring theβ-intensity distribution in the decay of Hg, Au and Pt isotopes around N=126 using the total absorption gamma-ray spectroscopy technique. The aim is to benchmark theoretical models used to make predictions of half-life and neutron emission probabilities of exotic nuclei involved in the rapid neutron capture process, leading to the synthesis of very heavy elements. This paper presents some experimental details and the current status of the analysis.</jats:p

    ADENINE DERIVATIVES AND THEIR BIOLOGICAL FUNCTIONS

    No full text
    corecore