412 research outputs found

    Symmetry-breaking transitions in networks of nonlinear circuit elements

    Full text link
    We investigate a nonlinear circuit consisting of N tunnel diodes in series, which shows close similarities to a semiconductor superlattice or to a neural network. Each tunnel diode is modeled by a three-variable FitzHugh-Nagumo-like system. The tunnel diodes are coupled globally through a load resistor. We find complex bifurcation scenarios with symmetry-breaking transitions that generate multiple fixed points off the synchronization manifold. We show that multiply degenerate zero-eigenvalue bifurcations occur, which lead to multistable current branches, and that these bifurcations are also degenerate with a Hopf bifurcation. These predicted scenarios of multiple branches and degenerate bifurcations are also found experimentally.Comment: 32 pages, 11 figures, 7 movies available as ancillary file

    Core hole-electron correlation in coherently coupled molecules

    Full text link
    We study the core hole-electron correlation in coherently coupled molecules by energy dispersive near edge X-ray absorption fine-structure spectroscopy. In a transient phase, which exists during the transition between two bulk arrangements, 1,4,5,8-naphthalene-tetracarboxylicacid-dianhydride multilayer films exhibit peculiar changes of the line shape and energy position of the X-ray absorption signal at the C K-edge with respect to the bulk and gas phase spectra. By a comparison to a theoretical model based on a coupling of transition dipoles, which is established for optical absorption, we demonstrate that the observed spectroscopic differences can be explained by an intermolecular delocalized core hole-electron pair. By applying this model we can furthermore quantify the coherence length of the delocalized core-exciton.Comment: 5 pages, 3 figures, Accepted Version, PRL, minor wording change

    Delayed feedback as a means of control of noise-induced motion

    Get PDF
    Time--delayed feedback is exploited for controlling noise--induced motion in coherence resonance oscillators. Namely, under the proper choice of time delay, one can either increase or decrease the regularity of motion. It is shown that in an excitable system, delayed feedback can stabilize the frequency of oscillations against variation of noise strength. Also, for fixed noise intensity, the phenomenon of entrainment of the basic oscillation period by the delayed feedback occurs. This allows one to steer the timescales of noise-induced motion by changing the time delay.Comment: 4 pages, 4 figures. In the replacement file Fig. 2 and Fig. 4(b),(d) were amended. The reason is numerical error found, that affected the quantitative estimates of correlation time, but did not affect the main messag

    Low-Energy Scale Excitations in the Spectral Function of Organic Monolayer Systems

    Full text link
    Using high-resolution photoemission spectroscopy we demonstrate that the electronic structure of several organic monolayer systems, in particular 1,4,5,8-naphthalene tetracarboxylic dianhydride and Copper-phtalocyanine on Ag(111), is characterized by a peculiar excitation feature right at the Fermi level. This feature displays a strong temperature dependence and is immediatly connected to the binding energy of the molecular states, determined by the coupling between the molecule and the substrate. At low temperatures, the line-width of this feature, appearing on top of the partly occupied lowest unoccupied molecular orbital of the free molecule, amounts to only 25\approx 25 meV, representing an unusually small energy scale for electronic excitations in these systems. We discuss possible origins, related e.g. to many-body excitations in the organic-metal adsorbate system, in particular a generalized Kondo scenario based on the single impurity Anderson model.Comment: 6 pages, 3 figures, accepted as PRB Rapid Communication

    Delayed feedback control of self-mobile cavity solitons in a wide-aperture laser with a saturable absorber

    Get PDF
    We investigate the spatiotemporal dynamics of cavity solitons in a broad area vertical-cavity surface-emitting laser with saturable absorption subjected to time-delayed optical feedback. Using a combination of analytical, numerical and path continuation methods we analyze the bifurcation structure of stationary and moving cavity solitons and identify two different types of traveling localized solutions, corresponding to slow and fast motion. We show that the delay impacts both stationary and moving solutions either causing drifting and wiggling dynamics of initially stationary cavity solitons or leading to stabilization of intrinsically moving solutions. Finally, we demonstrate that the fast cavity solitons can be associated with a lateral mode-locking regime in a broad-area laser with a single longitudinal mode

    Current advances in digital cognitive assessment for preclinical Alzheimer's disease

    Get PDF
    There is a pressing need to capture and track subtle cognitive change at the preclinical stage of Alzheimer's disease (AD) rapidly, cost-effectively, and with high sensitivity. Concurrently, the landscape of digital cognitive assessment is rapidly evolving as technology advances, older adult tech-adoption increases, and external events (i.e., COVID-19) necessitate remote digital assessment. Here, we provide a snapshot review of the current state of digital cognitive assessment for preclinical AD including different device platforms/assessment approaches, levels of validation, and implementation challenges. We focus on articles, grants, and recent conference proceedings specifically querying the relationship between digital cognitive assessments and established biomarkers for preclinical AD (e.g., amyloid beta and tau) in clinically normal (CN) individuals. Several digital assessments were identified across platforms (e.g., digital pens, smartphones). Digital assessments varied by intended setting (e.g., remote vs. in-clinic), level of supervision (e.g., self vs. supervised), and device origin (personal vs. study-provided). At least 11 publications characterize digital cognitive assessment against AD biomarkers among CN. First available data demonstrate promising validity of this approach against both conventional assessment methods (moderate to large effect sizes) and relevant biomarkers (predominantly weak to moderate effect sizes). We discuss levels of validation and issues relating to usability, data quality, data protection, and attrition. While still in its infancy, digital cognitive assessment, especially when administered remotely, will undoubtedly play a major future role in screening for and tracking preclinical AD

    Adsorption geometry and electronic structure of iron phthalocyanine on Ag surfaces: A LEED and photoelectron momentum mapping study

    Full text link
    We present a comprehensive study of the adsorption behavior of iron phthalocyanine on the low-index crystal faces of silver. By combining measurements of the reciprocal space by means of photoelectron momentum mapping and low energy electron diffraction, the real space adsorption geometries are reconstructed. At monolayer coverage ordered superstructures exist on all studied surfaces containing one molecule in the unit cell in case of Ag(100) and Ag(111), and two molecules per unit cell for Ag(110). The azimuthal tilt angle of the molecules against the high symmetry directions of the substrate is derived from the photoelectron momentum maps. A comparative analysis of the momentum patterns on the substrates with different symmetry indicates that both constituents of the twofold degenerate FePc lowest unoccupied molecular orbital are occupied by charge transfer from the substrate at the interface

    Digitalization of healthcare: Russian and foreign specifics

    Get PDF
    Currently, we are witnessing rapid changes of the modern economic system through the introduction of various digital technologies. The healthcare sector is no exception, but rather the digitization of the industry, thereby optimizing the provision of health services, increase quality control and reduce costs. The article describes the informatization process of the health care industry in the world and the Russian Federation. Currently, in the context of contemporary processes of digital transformation is modernization of the health care system's main stimulating technological progress is the use of medical information systems (MIS), introduction of medical products of the Internet of things (IoMT), advanced big data Analytics (Big Data) and the practical application of medical expert systems. In the conclusion the basic conclusions on results of the informatization in the sphere of healthcare in the Russian Federation on Federal and regional levels

    Nonuniform Self-Organized Dynamical States in Superconductors with Periodic Pinning

    Get PDF
    We consider magnetic flux moving in superconductors with periodic pinning arrays. We show that sample heating by moving vortices produces negative differential resistivity (NDR) of both N and S type (i.e., N- and S-shaped) in the voltage-current characteristic (VI curve). The uniform flux flow state is unstable in the NDR region of the VI curve. Domain structures appear during the NDR part of the VI curve of an N type, while a filamentary instability is observed for the NDR of an S type. The simultaneous existence of the NDR of both types gives rise to the appearance of striking self-organized (both stationary and non-stationary) two-dimensional dynamical structures.Comment: 4 pages, 2 figure
    corecore