211 research outputs found

    Competing Interactions among Supramolecular Structures on Surfaces

    Full text link
    A simple model was constructed to describe the polar ordering of non-centrosymmetric supramolecular aggregates formed by self assembling triblock rodcoil polymers. The aggregates are modeled as dipoles in a lattice with an Ising-like penalty associated with reversing the orientation of nearest neighbor dipoles. The choice of the potentials is based on experimental results and structural features of the supramolecular objects. For films of finite thickness, we find a periodic structure along an arbitrary direction perpendicular to the substrate normal, where the repeat unit is composed of two equal width domains with dipole up and dipole down configuration. When a short range interaction between the surface and the dipoles is included the balance between the up and down dipole domains is broken. Our results suggest that due to surface effects, films of finite thickness have a none zero macroscopic polarization, and that the polarization per unit volume appears to be a function of film thickness.Comment: 3 pages, 3 eps figure

    Semi-classical buckling of stiff polymers

    Full text link
    A quantitative theory of the buckling of a worm like chain based on a semi-classical approximation of the partition function is presented. The contribution of thermal fluctuations to the force-extension relation that allows to go beyond the classical Euler buckling is derived in the linear and non-linear regime as well. It is shown that the thermal fluctuations in the nonlinear buckling regime increase the end-to-end distance of the semiflexible rod if it is confined to 2 dimensions as opposed to the 3 dimensional case. Our approach allows a complete physical understanding of buckling in D=2 and in D=3 below and above the Euler transition.Comment: Revtex, 17 pages, 4 figure

    Pharmacokinetic/pharmacodynamic modeling of the antinociceptive effects of (+)-tramadol in the rat: role of cytochrome P450 2D activity

    Get PDF
    In this study the role of cytochrome P450 2D (CYP2D) in the pharmacokinetic/pharmacodynamic relationship of (+)-tramadol [(+)-T] has been explored in rats. Male Wistar rats were infused with (+)-T in the absence of and during pretreatment with a reversible CYP2D inhibitor quinine (Q), determining plasma concentrations of Q, (+)-T, and (+)-O-demethyltramadol [(+)-M1], and measuring antinociception. Pharmacokinetics of (+)-M1, but not (+)-T, was affected by Q pretreatment: early after the start of (+)-T infusion, levels of (+)-M1 were significantly lower (P < 0.05). However, at later times during Q infusion those levels increased continuously, exceeding the values found in animals that did not receive the inhibitor. These results suggest that CYP2D is involved in the formation and elimination of (+)-M1. In fact, results from another experiment where (+)-M1 was given in the presence and in absence of Q showed that (+)-M1 elimination clearance (CL(ME0)) was significantly lower (P < 0.05) in animals receiving Q. Inhibition of both (+)-M1 formation clearance (CL(M10)) and CL(ME0) were modeled by an inhibitory E(MAX) model, and the estimates (relative standard error) of the maximum degree of inhibition (E(MAX)) and IC(50), plasma concentration of Q eliciting half of E(MAX) for CL(M10) and CL(ME0), were 0.94 (0.04), 97 (0.51) ng/ml, and 48 (0.42) ng/ml, respectively. The modeling of the time course of antinociception showed that the contribution of (+)-T was negligible and (+)-M1 was responsible for the observed effects, which depend linearly on (+)-M1 effect site concentrations. Therefore, the CYP2D activity is a major determinant of the antinociception elicited after (+)-T administration

    Major depression, fibromyalgia and labour force participation: A population-based cross-sectional study

    Get PDF
    BACKGROUND: Previous studies have documented an elevated frequency of depressive symptoms and disorders in fibromyalgia, but have not examined the association between this comorbidity and occupational status. The purpose of this study was to describe these epidemiological associations using a national probability sample. METHODS: Data from iteration 1.1 of the Canadian Community Health Survey (CCHS) were used. The CCHS 1.1 was a large-scale national general health survey. The prevalence of major depression in subjects reporting that they had been diagnosed with fibromyalgia by a health professional was estimated, and then stratified by demographic variables. Logistic regression models predicting labour force participation were also examined. RESULTS: The annual prevalence of major depression was three times higher in subjects with fibromyalgia: 22.2% (95% CI 19.4 – 24.9), than in those without this condition: 7.2% (95% CI 7.0 – 7.4). The association persisted despite stratification for demographic variables. Logistic regression models predicting labour force participation indicated that both conditions had an independent (negative) effect on labour force participation. CONCLUSION: Fibromyalgia and major depression commonly co-occur and may be related to each other at a pathophysiological level. However, each syndrome is independently and negatively associated with labour force participation. A strength of this study is that it was conducted in a large probability sample from the general population. The main limitations are its cross-sectional nature, and its reliance on self-reported diagnoses of fibromyalgia

    Nucleotide Binding Switches the Information Flow in Ras GTPases

    Get PDF
    The Ras superfamily comprises many guanine nucleotide-binding proteins (G proteins) that are essential to intracellular signal transduction. The guanine nucleotide-dependent intrinsic flexibility patterns of five G proteins were investigated in atomic detail through Molecular Dynamics simulations of the GDP- and GTP-bound states (SGDP and SGTP, respectively). For all the considered systems, the intrinsic flexibility of SGDP was higher than that of SGTP, suggesting that Guanine Exchange Factor (GEF) recognition and nucleotide switch require higher amplitude motions than effector recognition or GTP hydrolysis. Functional mode, dynamic domain, and interaction energy correlation analyses highlighted significant differences in the dynamics of small G proteins and Gα proteins, especially in the inactive state. Indeed, SGDP of Gαt, is characterized by a more extensive energy coupling between nucleotide binding site and distal regions involved in GEF recognition compared to small G proteins, which attenuates in the active state. Moreover, mechanically distinct domains implicated in nucleotide switch could be detected in the presence of GDP but not in the presence of GTP. Finally, in small G proteins, functional modes are more detectable in the inactive state than in the active one and involve changes in solvent exposure of two highly conserved amino acids in switches I and II involved in GEF recognition. The average solvent exposure of these amino acids correlates in turn with the rate of GDP release, suggesting for them either direct or indirect roles in the process of nucleotide switch. Collectively, nucleotide binding changes the information flow through the conserved Ras-like domain, where GDP enhances the flexibility of mechanically distinct portions involved in nucleotide switch, and favors long distance allosteric communication (in Gα proteins), compared to GTP
    • …
    corecore