6 research outputs found

    The QUIJOTE experiment: project status and first scientific results

    Get PDF
    We present the current status of the QUIJOTE (Q-U-I JOint TEnerife) experiment, a new polarimeter with the aim of characterizing the polarization of the Cosmic Microwave Background, and other galactic or extra-galactic physical processes that emit in microwaves in the frequency range 10–42 GHz, and at large angular scales (around 1 degree resolution). The experiment has been designed to reach the required sensitivity to detect a primordial gravitational wave component in the CMB, provided its tensor-to-scalar ratio is larger than r ∼ 0.05. The project consists of two telescopes and three instruments which will survey a large sky area from the Teide Observatory to provide I, Q and U maps of high sensitivity. The first QUIJOTE instrument, known as Multi-Frequency Instrument (MFI), has been surveying the northern sky in four individual frequencies between 10 and 20 GHz since November 2012, providing data with an average sensitivity of 80 µK beam−1 in Q and U in a region of 20, 000 square-degrees. The second instrument, or Thirty-GHz Instrument (TGI), is currently undergoing the commissioning phase, and the third instrument, or Forty-GHz Instrument (FGI), is in the final fabrication phase. Finally, we describe the first scientific results obtained with the MFI. Some specific regions, mainly along the Galactic plane, have been surveyed to a deeper depth, reaching sensitivities of around 40 µK beam−1. We present new upper limits on the polarization of the anomalous dust emission, resulting from these data, in the Perseus molecular complex and in the W43 molecular complex

    The QUIJOTE experiment: project status and first scientific results

    Get PDF
    We present the current status of the QUIJOTE (Q-U-I JOint TEnerife) experiment, a new polarimeter with the aim of characterizing the polarization of the Cosmic Microwave Background, and other galactic or extra-galactic physical processes that emit in microwaves in the frequency range 10–42 GHz, and at large angular scales (around 1 degree resolution). The experiment has been designed to reach the required sensitivity to detect a primordial gravitational wave component in the CMB, provided its tensor-to-scalar ratio is larger than r ∼ 0.05. The project consists of two telescopes and three instruments which will survey a large sky area from the Teide Observatory to provide I, Q and U maps of high sensitivity. The first QUIJOTE instrument, known as Multi-Frequency Instrument (MFI), has been surveying the northern sky in four individual frequencies between 10 and 20 GHz since November 2012, providing data with an average sensitivity of 80 µK beam−1 in Q and U in a region of 20, 000 square-degrees. The second instrument, or Thirty-GHz Instrument (TGI), is currently undergoing the commissioning phase, and the third instrument, or Forty-GHz Instrument (FGI), is in the final fabrication phase. Finally, we describe the first scientific results obtained with the MFI. Some specific regions, mainly along the Galactic plane, have been surveyed to a deeper depth, reaching sensitivities of around 40 µK beam−1. We present new upper limits on the polarization of the anomalous dust emission, resulting from these data, in the Perseus molecular complex and in the W43 molecular complex

    LiteBIRD: An All-Sky Cosmic Microwave Background Probe of Inflation

    Get PDF
    The LiteBIRD mission will map polarized fluctuations in the cosmic microwave background (CMB) to search for the signature of gravitational waves from inflation, potentially opening a window on the Universe a fraction of a second after the Big Bang. CMB measurements from space give access to the largest angular scales and the full frequency range to constrain Galactic foregrounds, and LiteBIRD has been designed to take best advantage of the unique window of space. LiteBIRD will have a powerful ability to separate Galactic foreground emission from the CMB due to its 15 frequency bands spaced between 40 and 402 GHz and sensitive 100-mK bolometers. LiteBIRD will provide stringent control of systematic errors due to the benign thermal environment at the second Lagrange point, L2, 20-K rapidly rotating half-wave plates on each telescope, and the ability to crosscheck its results by measuring both the reionization and recombination peaks in the B-mode power spectrum. LiteBIRD would be the next step in the series of CMB space missions, COBE, WMAP, and Planck, each of which has given landmark scientific discoveries

    LiteBIRD: an all-sky cosmic microwave background probe of inflation

    No full text
    The Litebird mission will map polarized fluctuations in the cosmic microwave background (CMB) to search for the signature of gravitational waves from inflation, potentially opening a window on the Universe a fraction of a second after the Big Bang

    Core outcome set for surgical trials in gastric cancer (GASTROS study): international patient and healthcare professional consensus

    No full text
    Background: Surgery is the primary treatment that can offer potential cure for gastric cancer, but is associated with significant risks. Identifying optimal surgical approaches should be based on comparing outcomes from well designed trials. Currently, trials report different outcomes, making synthesis of evidence difficult. To address this, the aim of this study was to develop a core outcome set (COS)-a standardized group of outcomes important to key international stakeholders-that should be reported by future trials in this field.Methods: Stage 1 of the study involved identifying potentially important outcomes from previous trials and a series of patient interviews. Stage 2 involved patients and healthcare professionals prioritizing outcomes using a multilanguage international Delphi survey that informed an international consensus meeting at which the COS was finalized.Results: Some 498 outcomes were identified from previously reported trials and patient interviews, and rationalized into 56 items presented in the Delphi survey. A total of 952 patients, surgeons, and nurses enrolled in round 1 of the survey, and 662 (70 per cent) completed round 2. Following the consensus meeting, eight outcomes were included in the COS: disease-free survival, disease-specific survival, surgery-related death, recurrence, completeness of tumour removal, overall quality of life, nutritional effects, and 'serious' adverse events.Conclusion: A COS for surgical trials in gastric cancer has been developed with international patients and healthcare professionals. This is a minimum set of outcomes that is recommended to be used in all future trials in this field to improve trial design and synthesis of evidence
    corecore