23 research outputs found

    Geology and mineralogy of the Auki Crater, Tyrrhena Terra, Mars: A possible post impact-induced hydrothermal system

    Get PDF
    A variety of hydrothermal environments have been documented in terrestrial impact structures. Due to both past water interactions and meteoritic bombardment on the surface of Mars, several authors have predicted various scenarios that include the formation of hydrothermal systems. Geological and mineralogical evidence of past hydrothermal activity have only recently been found on Mars. Here, we present a geological and mineralogical study of the Auki Crater using the spectral and visible imagery data acquired by the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars), CTX (Context Camera) and HiRISE (High Resolution Imaging Science Experiment) instruments on board the NASA MRO mission. The Auki Crater is a complex crater that is ∌38 km in diameter located in Tyrrhena Terra (96.8°E and 15.7°S) and shows a correlation between its mineralogy and morphology. The presence of minerals, such as smectite, silica, zeolite, serpentine, carbonate and chlorite, associated with morphological structures, such as mounds, polygonal terrains, fractures and veins, suggests that the Auki Crater may have hosted a post impact-induced hydrothermal system. Although the distribution of hydrated minerals in and around the central uplift and the stratigraphic relationships of some morphological units could also be explained by the excavation and exhumation of carbonate-rich bedrock units as a consequence of crater formation, we favor the hypothesis of impact-induced hydrothermal circulation within fractures and subsequent mineral deposition. The hydrothermal system could have been active for a relatively long period of time after the impact, thus producing a potential transient habitable environment. It must be a spectrally neutral component to emphasize the spectral features; It is an average of spectra taken in the same column of the numerator spectra to correct the residual instrument artifacts and reduce detector noise that changes from column to column; It must be taken in the neighborhood of the area of interest to reduce most of the common mineral component. It is not always possible to satisfy all of the criteria listed above and this must be taken into account in the interpretation of the ratioed spectra. Moreover, this procedure works well if the denominator spectra have a phase similar to that of numerator spectra, but, as we will see, that is not always the case. The ratioed spectra may continue to have multiple phases that contribute to the spectrum with its spectral features (Wiseman et al., 2013). For this reason, when we compare a ratioed spectrum with those from the laboratory, it must be taken into account that more phases may continue to affect the band positions.For the geological and morphometric analyses, we used high-resolution imagery and topography from ESA Mars Express and NASA MRO (Mars Reconnaissance Orbiter) missions. In particular, HRSC (High Resolution Stereo Camera, Neukum et al., 2004) data (visible nadir image at 12.5 m/pixel and stereo-derived topography at 100 m/pixel) were used for the overall crater context, while CTX (ConTeXt, Malin et al., 2007) and HiRISE (High Resolution Imaging Science Experiment, McEwen et al., 2007) images supported the detailed analysis of the floor and central part of the crater. The latter two datasets were also used to derive high-resolution topography (down to 7 m/pixel from CTX and 1 m/pixel from HiRISE) through the NASA Stereo Pipeline software (Moratto et al., 2010). All of the data were georeferenced and co-registered using the equirectangular projection and the Mars IAU2000 reference ellipsoid. Finally, the imagery, spectral data and topography were imported into the GIS (Geographic Information System, ArcGIS v.10.2.2) environment to obtain a multitemporal/multisensor/multiscale view of the studied crater. We delineated the map units, taking into account their morphology/morphometry, surface properties, texture at different scales (e.g., relative tonal differences from visible imagery, thermal inertia, rough or smooth texture), and their internal sedimentary structure when possible (from erosional windows, crater walls or scarps). The latter approach allowed us to i) identify the main geological/geomorphological units and to ii) correlate the defined units with the mineralogical observations from CRISM (Figs. 1 and 4).</ce:section

    Periodic Bedrock Ridges at the ExoMars 2022 Landing Site: Evidence for a Changing Wind Regime

    Get PDF
    Wind-formed features are abundant in Oxia Planum (Mars), the landing site of the 2022 ExoMars mission, which shows geological evidence for a past wet environment. Studies of aeolian bedforms at the landing site were focused on assessing the risk for rover trafficability, however their potential in recording climatic fluctuations has not been explored. Here we show that the landing site experienced multiple climatic changes in the Amazonian, which are recorded by an intriguing set of ridges that we interpret as Periodic Bedrock Ridges (PBRs). Clues for a PBR origin result from ridge regularity, defect terminations, and the presence of preserved megaripples detaching from the PBRs. PBR orientation differs from superimposed transverse aeolian ridges pointing toward a major change in wind regime. Our results provide constrains on PBR formation mechanisms and offer indications on paleo winds that will be crucial for understanding the landing site geology

    The 'Moon Mapping' project to promote cooperation between students of Italy and China

    Get PDF
    The research project 'Moon Mapping' has been established in 2014 between the Italian and Chinese Governments to promote cooperation and exchange between undergraduate students from both countries. The operational phase of the project started in early 2015, and will end in 2017, for a total length of three years. The main aim is to train new scholars to be able to work on different kinds of remotely-sensed data collected over the Moon surface by the Chinese space missions Chang'E-1/2. The project coordination has been assigned to the Italian Space Agency for the Italian side and to the Center of Space Exploration, China Ministry of Education, for the Chinese side. Several Chinese universities and Italian national research institutes and universities have been officially involved in this project. Six main research topics have been identified: (1) map of the solar wind ion; (2) geomorphological map of the Moon; (3) data preprocessing of Chang'E-1 mission; (4) map of element distribution; (5) establishment of 3D digital visualization system; and (6) compilation and publication of a tutorial on joint lunar mapping

    Aeolian Landforms in the ExoMars Landing Site, a Regional Perspective

    Get PDF
    PBRs, TARs and dunes in the ExoMars landing site and its surrounding, evidence for regional winds and climatic changes

    Aeolian processes at the ExoMars 2022 landing site

    Get PDF
    Wind-formed features are abundant in Oxia Planum (Mars), the landing site of the 2022 ExoMars mission, which shows geological evidence for a past wet environment [1-4]. Here we show that the landing site experienced multiple climatic changes recorded by an intriguing set of ridges that we interpret as Periodic Bedrock Ridges (PBRs) [5, 6]. Clues for a PBR origin result from ridge regularity, defect terminations, and the presence of preserved megaripples detaching from the PBRs. PBR orientation differs from superimposed transverse aeolian ridges pointing toward a major change in wind regime. Superposition relationships of the PBRs with a dark-toned geological unit [4] indicate that such a change in the main wind condition likely occurred during the Amazonian. Active bedform migration from nearby craters (McLaughlin and Oyama) show winds coming from the North, matching the orientation of the wind streaks visible in the putative landing ellipse. Our results provide constrains on the wind regime in Oxia Planum and offer indications on present and past winds that will be crucial for understanding the landing site geology.For full details, see [1].[1] Silvestro, S. et al. 2021. Periodic Bedrock Ridges at the ExoMars 2022 landing site: Evidence for a Changing Wind Regime. GRL, 48, 4.[2] Favaro, E. et al. 2021. The Aeolian Environment of the Landing Site for the ExoMars Rosalind Franklin Rover in Oxia Planum, Mars. JGR, 126, 4.[3] Balme, M. et al. 2017. Surface-based 3D measurements of small aeolian bedforms on Mars and implications for estimating ExoMars rover traversability hazards. PSS, 153, 39-53.[4] Quantin, C. et al. Oxia Planum: The Landing Site for the ExoMars ''Rosalind Franklin'' Rover Mission: Geological Context and Prelanding Interpretation. Astrobiology, 21, 3.[5] Montgomery, D. R. et al. 2012. Periodic bedrock ridges on Mars. JGR, 117, E03005.[6] Hugenholtz, C. H. et al. 2015. Formation of periodic bedrock ridges on Earth. Aeolian Research, 18, 135-144

    Sustained fluvial deposition recorded in Mars’ Noachian stratigraphic record

    Get PDF
    Orbital observation has revealed a rich record of fluvial landforms on Mars, with much of this record dating 3.6–3.0 Ga. Despite widespread geomorphic evidence, few analyses of Mars’ alluvial sedimentary-stratigraphic record exist, with detailed studies of alluvium largely limited to smaller sand-bodies amenable to study in-situ by rovers. These typically metre-scale outcrop dimensions have prevented interpretation of larger scale channel-morphology and long-term basin evolution, vital for understanding the past Martian climate. Here we give an interpretation of a large sedimentary succession at Izola mensa within the NW Hellas Basin rim. The succession comprises channel and barform packages which together demonstrate that river deposition was already well established >3.7 Ga. The deposits mirror terrestrial analogues subject to low-peak discharge variation, implying that river deposition at Izola was subject to sustained, potentially perennial, fluvial flow. Such conditions would require an environment capable of maintaining large volumes of water for extensive time-periods, necessitating a precipitation-driven hydrological cycle

    Spring Deposits and Lakeshore Layered Sediments Inside the Vernal Crater (SW Arabia Terra): A Resource-Rich and Engineering Safe Mars Human Landing Site

    Get PDF
    We here present the scientific rationale, the resource analysis and the engineering requirements evaluation performed on the Vernal crater and its closest surroundings in SW Arabia Terra, Mars, as a possible future human landing site

    Moon Mapping Project: un progetto di cooperazione scientifica in ambito spaziale tra Italia e Cina

    Get PDF
    Il programma “Joint Lunar Map Drawing Project by Chinese and Italian College Students”, noto come Moon Mapping Project, rappresenta un’importante iniziativa di cooperazione scientifica tra Italia e Cina, finalizzata al coinvolgimento diretto degli studenti dei due Paesi nella creazione di mappe tematiche della Luna attraverso l’elaborazione di dati acquisiti dai satelliti cinesi Chang’e-1 e Chang’e-2. Il progetto triennale, iniziato nel 2015, è inserito nell’accordo bilaterale siglato dal Ministry of Science and Technology, P.R. China (MOST) e dal MIUR, coordinato dall’ASI per l’Italia e dal National Remote Sensing Center of China. La parte italiana coinvolge 11 università e centri di ricerca e da parte cinese sono coinvolte 8 università e centri di ricerca. A seguito di una serie di visite presso le strutture di ricerca italiane e cinesi, che hanno permesso di conoscere nel dettaglio le attività che si svolgono nelle sedi del progetto, sono stati delineati 6 temi di ricerca, coordinati in modo congiunto da parte italiana e cinese. Le prime attività di ricerca hanno riguardato l’analisi dei dati resi disponibili da parte dei colleghi cinesi ed è stata estesa la piattaforma di condivisione web ASDC MATISSE (https://tools.asdc.asi.it/matisse.jsp). Da un punto di vista tecnico i dati cinesi devono essere considerati con un’attenzione particolare e necessitano di una fase di pre-trattamento importante a monte di un utilizzo operativo. Sono disponibili nel sito dati del sensore multispettrale IIM (Sagnac- based Imaging Spectrometer) e della camera CCD per la ricostruzione di immagini stereo per interpretazione in 3D. Queste prime attività hanno messo in evidenza diversi aspetti di sicuro interesse scientifico nell’ottica di un approfondimento dello stato di conoscenza della superficie lunare anche finalizzato 437 ïżŒalle future missioni già previste nei programmi spaziali. Risulta inoltre di evidente interesse, anche nella sua complessità, il coinvolgimento diretto degli studenti provenienti da ambiti disciplinari e culturali diversi. Ulteriori informazioni sul progetto sono disponibili sul sito: http://solarsystem.asdc.asi.it/moonmapping

    Depositional Controls of the Layered Deposits of Arabia Terra, Mars: Hints From Basin Geometries and Stratigraphic Trends

    No full text
    An extensive distribution of water-altered equatorial layered deposits (ELDs) characterizes the densely cratered terrain of Arabia Terra (AT), Mars. The majority of these deposits reside within craters and are easily identified by laterally continuous layering. The processes that led to their formation have been widely investigated, but remain unresolved. Furthermore, their precise spatial distribution as a whole, as well as their relationship to one another individually, has yet to be fully appreciated. This work examines 1,013 craters and emphasizes 45 that were observed to contain ELDs within the eastern half of AT. We present the statistical relationships between crater characteristics (e.g., location, diameter, depth), as well as evidence supporting a southeast-northwest facies change. The 30-2,000-m range of measured deposit thicknesses, accompanied with individual layer thicknesses, correlate with crater elevation either due to water level differences within craters, or a proximal-distal relationship to the source. Air fall or fluid expulsion appear to stand out among all the prevailing depositional hypotheses, however the volume required to fill these craters in an ash fall scenario is in opposition with the locations of known volcanic provinces and the volume of ash that volcanic eruptions produce. This new evidence of a regional facies change provides a unique opportunity to better understand past climate and sedimentary processes on Mars, as well as the putative groundwater level in ancient AT. Ultimately, our results do not agree well with a unified depositional method for these deposits and the possibility of mixed origins should be taken seriously
    corecore