7,715 research outputs found
Fermionic Coset Models as Topological Models
By considering the fermionic realization of coset models, we show that
the partition function for the model defines a Topological Quantum
Field Theory and coincides with that for a 2-dimensional Abelian BF system. In
the non-Abelian case, we prove the topological character of coset models
by explicit computation, also finding a natural extension of 2-dimensional BF
systems with non-Abelian symmetry.Comment: 14p
Equilibrium and Disorder-induced behavior in Quantum Light-Matter Systems
We analyze equilibrium properties of coupled-doped cavities described by the
Jaynes-Cummings- Hubbard Hamiltonian. In particular, we characterize the
entanglement of the system in relation to the insulating-superfluid phase
transition. We point out the existence of a crossover inside the superfluid
phase of the system when the excitations change from polaritonic to purely
photonic. Using an ensemble statistical approach for small systems and
stochastic-mean-field theory for large systems we analyze static disorder of
the characteristic parameters of the system and explore the ground state
induced statistics. We report on a variety of glassy phases deriving from the
hybrid statistics of the system. On-site strong disorder induces insulating
behavior through two different mechanisms. For disorder in the light-matter
detuning, low energy cavities dominate the statistics allowing the excitations
to localize and bunch in such cavities. In the case of disorder in the light-
matter coupling, sites with strong coupling between light and matter become
very significant, which enhances the Mott-like insulating behavior. Inter-site
(hopping) disorder induces fluidity and the dominant sites are strongly coupled
to each other.Comment: about 10 pages, 12 figure
Spin-phonon induced magnetic order in Kagome ice
We study the effects of lattice deformations on the Kagome spin ice, with
Ising spins coupled by nearest neighbor exchange and long range dipolar
interactions, in the presence of in-plane magnetic fields. We describe the
lattice energy according to the Einstein model, where each site distortion is
treated independently. Upon integration of lattice degrees of freedom,
effective quadratic spin interactions arise. Classical MonteCarlo simulations
are performed on the resulting model, retaining up to third neighbor
interactions, under different directions of the magnetic field. We find that,
as the effect of the deformation is increased, a rich plateau structure appears
in the magnetization curves.Comment: 7 pages, 8 figure
Non-Abelian fractional quantum Hall states and chiral coset conformal field theories
We propose an effective Lagrangian for the low energy theory of the Pfaffian
states of the fractional quantum Hall effect in the bulk in terms of
non-Abelian Chern-Simons (CS) actions. Our approach exploits the connection
between the topological Chern-Simons theory and chiral conformal field
theories. This construction can be used to describe a large class of
non-Abelian FQH states.Comment: Revised manuscript, 17 pages; new section discusses parafermion
state
Proper Scoring Rules for Evaluating Density Forecasts with Asymmetric Loss Functions
This article proposes a novel asymmetric continuous probabilistic score (ACPS) for evaluating and comparing density forecasts. It generalizes the proposed score and defines a weighted version, which emphasizes regions of interest, such as the tails or the center of a variable’s range. The (weighted) ACPS extends the symmetric (weighted) CRPS by allowing for asymmetries in the preferences underlying the scoring rule. A test is used to statistically compare the predictive ability of different forecasts. The ACPS is of general use in any situation where the decision-maker has asymmetric preferences in the evaluation of the forecasts. In an artificial experiment, the implications of varying the level of asymmetry in the ACPS are illustrated. Then, the proposed score and test are applied to assess and compare density forecasts of macroeconomic relevant datasets (U.S. employment growth) and of commodity prices (oil and electricity prices) with particular focus on the recent COVID-19 crisis period
Hierarchical Species Sampling Models
This paper introduces a general class of hierarchical nonparametric prior distributions. The random probability measures are constructed by a hierarchy of generalized species sampling processes with possibly non-diffuse base measures. The proposed framework provides a general probabilistic foundation for hierarchical random measures with either atomic or mixed base measures and allows for studying their properties, such as the distribution of the marginal and total number of clusters. We show that hierarchical species sampling models have a Chinese Restaurants Franchise representation and can be used as prior distributions to undertake Bayesian nonparametric inference. We provide a method to sample from the posterior distribution together with some numerical illustrations. Our class of priors includes some new hierarchical mixture priors such as the hierarchical Gnedin measures, and other well-known prior distributions such as the hierarchical Pitman-Yor and the hierarchical normalized random measures
From perfect to fractal transmission in spin chains
Perfect state transfer is possible in modulated spin chains, imperfections
however are likely to corrupt the state transfer. We study the robustness of
this quantum communication protocol in the presence of disorder both in the
exchange couplings between the spins and in the local magnetic field. The
degradation of the fidelity can be suitably expressed, as a function of the
level of imperfection and the length of the chain, in a scaling form. In
addition the time signal of fidelity becomes fractal. We further characterize
the state transfer by analyzing the spectral properties of the Hamiltonian of
the spin chain.Comment: 8 pages, 10 figures, published versio
Bound states in weakly disordered spin ladders
We study the appearance of bound states in the spin gap of spin-1/2 ladders
induced by weak bond disorder. Starting from the strong-coupling limit, i.e.,
the limit of weakly coupled dimers, we perform a projection on the
single-triplet subspace and derive the position of bound states for the single
impurity problem of one modified coupling as well as for small impurity
clusters. The case of a finite concentration of impurities is treated with the
coherent-potential approximation in the strong-coupling limit and compared with
numerical results. Furthermore, we analyze the details in the structure of the
density of states and relate their origin to the influence of impurity
clusters.Comment: 2 pages, 1 figure. Proceedings of SCES'04, to appear in Physica
Fractal Fidelity as a signature of Quantum Chaos
We analyze the fidelity of a quantum simulation and we show that it displays
fractal fluctuations iff the simulated dynamics is chaotic. This analysis
allows us to investigate a given simulated dynamics without any prior
knowledge. In the case of integrable dynamics, the appearance of fidelity
fractal fluctuations is a signal of a highly corrupted simulation. We
conjecture that fidelity fractal fluctuations are a signature of the appearance
of quantum chaos. Our analysis can be realized already by a few qubit quantum
processor.Comment: 5 pages, 5 figure
A Narrative Review on C3 Glomerulopathy: A Rare Renal Disease
In April 2012, a group of nephrologists organized a consensus conference in Cambridge (UK) on type II membranoproliferative glomerulonephritis and decided to use a new terminology, "C3 glomerulopathy" (C3 GP). Further knowledge on the complement system and on kidney biopsy contributed toward distinguishing this disease into three subgroups: dense deposit disease (DDD), C3 glomerulonephritis (C3 GN), and the CFHR5 nephropathy. The persistent presence of microhematuria with or without light or heavy proteinuria after an infection episode suggests the potential onset of C3 GP. These nephritides are characterized by abnormal activation of the complement alternative pathway, abnormal deposition of C3 in the glomeruli, and progression of renal damage to end-stage kidney disease. The diagnosis is based on studying the complement system, relative genetics, and kidney biopsies. The treatment gap derives from the absence of a robust understanding of their natural outcome. Therefore, a specific treatment for the different types of C3 GP has not been established. Recommendations have been obtained from case series and observational studies because no randomized clinical trials have been conducted. Current treatment is based on corticosteroids and antiproliferative drugs (cyclophosphamide, mycophenolate mofetil), monoclonal antibodies (rituximab) or complement inhibitors (eculizumab). In some cases, it is suggested to include sessions of plasma exchange
- …