42 research outputs found

    Evaluation of allelic forms of the erythrocyte binding antigen 175 (EBA-175) in Plasmodium falciparum field isolates from Brazilian endemic area

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Plasmodium falciparum </it>Erythrocyte Binding Antigen-175 (EBA-175) is an antigen considered to be one of the leading malaria vaccine candidates. EBA-175 mediates sialic acid-dependent binding to glycophorin A on the erythrocytes playing a crucial role during invasion of the <it>P. falciparum </it>in the host cell. Dimorphic allele segments, termed C-fragment and F-fragment, have been found in high endemicity malaria areas and associations between the dimorphism and severe malaria have been described. In this study, the genetic dimorphism of EBA-175 was evaluated in <it>P. falciparum </it>field isolates from Brazilian malaria endemic area.</p> <p>Methods</p> <p>The study was carried out in rural villages situated near Porto Velho, Rondonia State in the Brazilian Amazon in three time points between 1993 and 2008. The allelic dimorphism of the EBA-175 was analysed by Nested PCR.</p> <p>Results</p> <p>The classical allelic dimorphism of the EBA-175 was identified in the studied area. Overall, C-fragment was amplified in a higher frequency than F-fragment. The same was observed in the three time points where C-fragment was observed in a higher frequency than F-fragment. Single infections (one fragment amplified) were more frequent than mixed infection (two fragments amplified).</p> <p>Conclusions</p> <p>These findings confirm the dimorphism of EBA175, since only the two types of fragments were amplified, C-fragment and F-fragment. Also, the results show the remarkable predominance of CAMP allele in the studied area. The comparative analysis in three time points indicates that the allelic dimorphism of the EBA-175 is stable over time.</p

    Investigating the non-specific effects of BCG vaccination on the innate immune system in Ugandan neonates: study protocol for a randomised controlled trial.

    Get PDF
    BACKGROUND: The potential for Bacillus Calmette-Guérin (BCG) vaccination to protect infants against non-mycobacterial disease has been suggested by a randomised controlled trial conducted in low birth-weight infants in West Africa. Trials to confirm these findings in healthy term infants, and in a non-West African setting, have not yet been carried out. In addition, a biological mechanism to explain such heterologous effects of BCG in the neonatal period has not been confirmed. This trial aims to address these issues by evaluating whether BCG non-specifically enhances the innate immune system in term Ugandan neonates, leading to increased protection from a variety of infectious diseases. METHODS: This trial will be an investigator-blinded, randomised controlled trial of 560 Ugandan neonates, comparing those receiving BCG at birth with those receiving BCG at 6 weeks of age. This design allows comparison of outcomes between BCG-vaccinated and -naïve infants until 6 weeks of age, and between early and delayed BCG-vaccinated infants from 6 weeks of age onwards. The primary outcomes of the study will be a panel of innate immune parameters. Secondary outcomes will include clinical illness measures. DISCUSSION: Investigation of the possible broadly protective effects of neonatal BCG immunisation, and the optimal vaccination timing to produce these effects, could have profound implications for public healthcare policy. Evidence of protection against heterologous pathogens would underscore the importance of prioritising BCG administration in a timely manner for all infants, provide advocacy against the termination of BCG's use and support novel anti-tuberculous vaccine strategies that would safeguard such beneficial effects. TRIAL REGISTRATION: ISRCTN59683017 : registration date: 15 January 2014
    corecore