212 research outputs found

    Free Iron Distribution in Some Poorly Drained Prairie Soils in Iowa

    Get PDF
    In classification and mapping of soils an interpretation of the natural drainage characteristics of the soil types is usually made. Some standard natural drainage classes used are poorly drained, imperfectly drained, moderately well- drained, and well-drained (1). Interpretation of the natural drainage of the soils is important from the agronomic standpoint, and also is basic to the soil classification scheme in present use. The natural drainage of a soil is interpreted mainly by inferences from the color and mottling of hydrated iron oxides in the subsoil. Few studies have been made of the nature and quantity of these iron oxides in soils. Extractable iron or free iron has been determined in a few well-drained Brunizem and Gray Brown Podzolic soils, and in several poorly drained Forested Planosols (2) (3) (4) (5). The purpose of this paper is to report data on free iron in several poorly drained prairie (Wiesenboden) soils and to compare these data with available data of other great soil groups in Iowa

    A Boolean Approach to Linear Prediction for Signaling Network Modeling

    Get PDF
    The task of the DREAM4 (Dialogue for Reverse Engineering Assessments and Methods) “Predictive signaling network modeling” challenge was to develop a method that, from single-stimulus/inhibitor data, reconstructs a cause-effect network to be used to predict the protein activity level in multi-stimulus/inhibitor experimental conditions. The method presented in this paper, one of the best performing in this challenge, consists of 3 steps: 1. Boolean tables are inferred from single-stimulus/inhibitor data to classify whether a particular combination of stimulus and inhibitor is affecting the protein. 2. A cause-effect network is reconstructed starting from these tables. 3. Training data are linearly combined according to rules inferred from the reconstructed network. This method, although simple, permits one to achieve a good performance providing reasonable predictions based on a reconstructed network compatible with knowledge from the literature. It can be potentially used to predict how signaling pathways are affected by different ligands and how this response is altered by diseases

    Differential Forms on Log Canonical Spaces

    Get PDF
    The present paper is concerned with differential forms on log canonical varieties. It is shown that any p-form defined on the smooth locus of a variety with canonical or klt singularities extends regularly to any resolution of singularities. In fact, a much more general theorem for log canonical pairs is established. The proof relies on vanishing theorems for log canonical varieties and on methods of the minimal model program. In addition, a theory of differential forms on dlt pairs is developed. It is shown that many of the fundamental theorems and techniques known for sheaves of logarithmic differentials on smooth varieties also hold in the dlt setting. Immediate applications include the existence of a pull-back map for reflexive differentials, generalisations of Bogomolov-Sommese type vanishing results, and a positive answer to the Lipman-Zariski conjecture for klt spaces.Comment: 72 pages, 6 figures. A shortened version of this paper has appeared in Publications math\'ematiques de l'IH\'ES. The final publication is available at http://www.springerlink.co

    Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast

    Get PDF
    Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD

    PROTEINCHALLENGE: Crowd sourcing in proteomics analysis and software development

    Get PDF
    AbstractIn large-scale proteomics studies there is a temptation, after months of experimental work, to plug resulting data into a convenient—if poorly implemented—set of tools, which may neither do the data justice nor help answer the scientific question. In this paper we have captured key concerns, including arguments for community-wide open source software development and “big data” compatible solutions for the future. For the meantime, we have laid out ten top tips for data processing. With these at hand, a first large-scale proteomics analysis hopefully becomes less daunting to navigate.However there is clearly a real need for robust tools, standard operating procedures and general acceptance of best practises. Thus we submit to the proteomics community a call for a community-wide open set of proteomics analysis challenges—PROTEINCHALLENGE—that directly target and compare data analysis workflows, with the aim of setting a community-driven gold standard for data handling, reporting and sharing. This article is part of a Special Issue entitled: New Horizons and Applications for Proteomics [EuPA 2012]

    A Relative Variation-Based Method to Unraveling Gene Regulatory Networks

    Get PDF
    Gene regulatory network (GRN) reconstruction is essential in understanding the functioning and pathology of a biological system. Extensive models and algorithms have been developed to unravel a GRN. The DREAM project aims to clarify both advantages and disadvantages of these methods from an application viewpoint. An interesting yet surprising observation is that compared with complicated methods like those based on nonlinear differential equations, etc., methods based on a simple statistics, such as the so-called -score, usually perform better. A fundamental problem with the -score, however, is that direct and indirect regulations can not be easily distinguished. To overcome this drawback, a relative expression level variation (RELV) based GRN inference algorithm is suggested in this paper, which consists of three major steps. Firstly, on the basis of wild type and single gene knockout/knockdown experimental data, the magnitude of RELV of a gene is estimated. Secondly, probability for the existence of a direct regulation from a perturbed gene to a measured gene is estimated, which is further utilized to estimate whether a gene can be regulated by other genes. Finally, the normalized RELVs are modified to make genes with an estimated zero in-degree have smaller RELVs in magnitude than the other genes, which is used afterwards in queuing possibilities of the existence of direct regulations among genes and therefore leads to an estimate on the GRN topology. This method can in principle avoid the so-called cascade errors under certain situations. Computational results with the Size 100 sub-challenges of DREAM3 and DREAM4 show that, compared with the -score based method, prediction performances can be substantially improved, especially the AUPR specification. Moreover, it can even outperform the best team of both DREAM3 and DREAM4. Furthermore, the high precision of the obtained most reliable predictions shows that the suggested algorithm may be very helpful in guiding biological experiment designs

    Petri Nets with Fuzzy Logic (PNFL): Reverse Engineering and Parametrization

    Get PDF
    Background: The recent DREAM4 blind assessment provided a particularly realistic and challenging setting for network reverse engineering methods. The in silico part of DREAM4 solicited the inference of cycle-rich gene regulatory networks from heterogeneous, noisy expression data including time courses as well as knockout, knockdown and multifactorial perturbations. Methodology and Principal Findings: We inferred and parametrized simulation models based on Petri Nets with Fuzzy Logic (PNFL). This completely automated approach correctly reconstructed networks with cycles as well as oscillating network motifs. PNFL was evaluated as the best performer on DREAM4 in silico networks of size 10 with an area under the precision-recall curve (AUPR) of 81%. Besides topology, we inferred a range of additional mechanistic details with good reliability, e.g. distinguishing activation from inhibition as well as dependent from independent regulation. Our models also performed well on new experimental conditions such as double knockout mutations that were not included in the provided datasets. Conclusions: The inference of biological networks substantially benefits from methods that are expressive enough to deal with diverse datasets in a unified way. At the same time, overly complex approaches could generate multiple different models that explain the data equally well. PNFL appears to strike the balance between expressive power and complexity. This also applies to the intuitive representation of PNFL models combining a straightforward graphical notation with colloquial fuzzy parameters

    Differential Gene Expression Regulated by Oscillatory Transcription Factors

    Get PDF
    Cells respond to changes in the internal and external environment by a complex regulatory system whose end-point is the activation of transcription factors controlling the expression of a pool of ad-hoc genes. Recent experiments have shown that certain stimuli may trigger oscillations in the concentration of transcription factors such as NF-B and p53 influencing the final outcome of the genetic response. In this study we investigate the role of oscillations in the case of three different well known gene regulatory mechanisms using mathematical models based on ordinary differential equations and numerical simulations. We considered the cases of direct regulation, two-step regulation and feed-forward loops, and characterized their response to oscillatory input signals both analytically and numerically. We show that in the case of indirect two-step regulation the expression of genes can be turned on or off in a frequency dependent manner, and that feed-forward loops are also able to selectively respond to the temporal profile of oscillating transcription factors
    corecore