851 research outputs found
2D thermal resistance of pile heat exchangers
Structural foundation piles are being used increasingly as heat exchangers to provide renewable heat for new buildings. To design such energy systems a steady state is assumed within the pile, which is conventionally characterised by constant thermal resistance. However, there has been little research regarding pile resistance and there are few published case studies. Numerical modelling results are presented here to provide typical values of pile resistance, depending on the details of the heat exchange pipes. Analysis suggests large diameter piles may take several days to reach steady state; in these cases a transient design approach may be more appropriate
A new modelling approach for piled and other ground heat exchanger applications
Pile heat exchangers have an increasing role to play in the delivery of renewable heating and cooling energy. Traditionally the thermal design of ground heat exchangers has relied upon analytical approaches which take a relatively simple approach to the inside of the heat exchanger. This approach is justified while the heat exchanger diameter remains small. However, as larger diameter piled foundations are used as heat exchangers, the transient heat transfer processes operating within the pile become more important. To increase our understanding of these processes and ultimately lead to improved thermal design approaches for pile heat exchangers it is important to examine the heat transfer within the pile in detail. To accomplish this, a new numerical approach has been implemented within the finite element software ABAQUS. Coupling of the convective heat transfer due to fluid flow within the heat transfer pipes and the heat transfer by conduction within the pile concrete is the most important facet of the model. The resulting modelling approach, which is ready to generalise to other geothermal applications and to assess thermo-mechanical couplings, has been validated against a multi-stage thermal response test carried out on a test pile in London Clay
Upgrade of the Glasgow photon tagging spectrometer for Mainz MAMI-C
The Glasgow photon tagging spectrometer at Mainz has been upgraded so that it
can be used with the 1500 MeV electron beam now available from the Mainz
microtron MAMI-C. The changes made and the resulting properties of the
spectrometer are discussed.Comment: 20 pages, 12 figure
Defining the microbial transcriptional response to colitis through integrated host and microbiome profiling
The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess modifications to both bacterial community structure and transcriptional activity in a mouse model of colitis. By using transcriptomic analysis of colonic tissue and luminal RNA derived from the host, we have also characterised how host transcription relates to the microbial transcriptional response in inflammation. In colitis, increased abundance and transcription of diverse microbial gene families involved in responses to nutrient deprivation, antimicrobial peptide production and oxidative stress support an adaptation of multiple commensal genera to withstand a diverse set of environmental stressors in the inflammatory environment. These data are supported by a transcriptional signature of activated macrophages and granulocytes in the gut lumen during colitis, a signature that includes the transcription of the key antimicrobial genes S100a8 and S100a9 (calprotectin). Genes involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase were identified as changing to a greater extent at the level of transcription than would be predicted by DNA abundance changes, implicating a role for increased oxygen tension and/or host-derived reactive oxygen species in driving transcriptional changes in commensal microbes
To respond or not to respond - a personal perspective of intestinal tolerance
For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research
Comparison of two different models for pile thermal response test interpretation
Thermal response tests (TRTs) are regularly used to characterise the thermal resistance of borehole heat exchangers and to assess the thermal conductivity of the surrounding ground. It is becoming common to apply the same in situ testing technique to pile heat exchangers, despite international guidance suggesting that TRTs should be limited to hole diameters of 152 mm (6 in.). This size restriction arises from the increased thermal inertia of larger diameter heat exchangers, which invalidates the assumption of a steady state within the concrete needed to interpret the test data by traditional line source analysis techniques. However, new methods of analysis for pile heat exchangers have recently been developed that take account of the transient behaviour of the pile concrete. This paper applies these new methods to data from a multi-stage TRT conducted on a small diameter test pile. The thermal conductivity and thermal resistance determined using this method are then compared with those from traditional analytical approaches based on a line source analysis. Differences between the approaches are discussed, along with the observation that the thermal resistance may not be constant over the different test stages
Measurements of 12C(→γ,pp) photon asymmetries for Eγ= 200–450 MeV
The 12C (→γ ,pp) reaction has been studied in the photon energy range 200-450 MeV at the Mainz microtron MAMI-C, where linearly polarised photons were energy-tagged using the Glasgow-Mainz Tagged Photon Spectrometer and protons were detected in the Crystal Ball detector. The photon asymmetry Σ has been measured over a wider Eγ range than previous measurements. The strongest asymmetries were found at low missing energies where direct emission of nucleon pairs is expected. Cuts on the difference in azimuthal angles of the two ejected protons increased the magnitude of the observed asymmetries. At low missing energies the Σ data exhibit a strong angular dependence, similar to deuteron photodisintegration
The Thermal Behaviour of Three Different Auger Pressure Grouted Piles Used as Heat Exchangers
Three auger pressure grouted (APG) test piles were constructed at a site in Richmond, Texas. The piles were each equipped with two U-loops of heat transfer pipes so that they could function as pile heat exchangers. The piles were of two different diameters and used two different grouts, a standard APG grout and a thermally enhanced grout. Thermal response tests, where fluid heated at a constant rate is circulated through the pipe loops, were carried out on the three piles, utilising either single or double loops. The resulting test data can be used to determine the surrounding soil thermal conductivity and the pile thermal resistance, both essential design parameters for ground source heat pump systems using pile heat exchangers. This paper uses parameter estimation techniques to fit empirical temperature response curves to the thermal response test data and compares the results with standard line source interpretation techniques. As expected, the thermal response tests with double loops result in smaller thermal resistances than the same pile when the test was run with a single loop. Back analysis of the pile thermal resistance also allows calculation of the grout thermal properties. The thermally enhanced grout is shown to have inferior thermal properties than the standard APG grout. Together these analyses demonstrate the importance of pile size, grout thermal properties and pipe positions in controlling the thermal behaviour of heat exchanger piles
Thermal Conductivity of Simulated Soils by the Needle Probe Method for Energy Foundation Applications
Soil thermal conductivity is an important parameter in the design of ground source heat pump and energy foundation systems. A laboratory method for measuring the soil thermal conductivity is the needle probe method. Earlier, analysis of the needle probe test data has been simplistic, relying heavily on human judgment and rules of thumb. This article presents an alternative method of analyzing the needle probe data with the aid of MATLAB, which is a technical programming language and computing environment. Four agar–kaolin specimens of varying densities were prepared to resemble simple soils. These were tested using the needle probe for a range of heating times and heating powers, to see what effect these parameters would have on the results. The repeatability when keeping the heating time and heating power constant was within ±2%. When the heating time and heating power were varied, the variation in results from the average for a given specimen ranged from ±4% to +10%/–8%. This range is significantly higher than the repeatability. Possible reasons for this are discussed in this article
A comparison of laboratory and in situ methods to determine soil thermal conductivity for energy foundations and other ground heat exchanger applications
Soil thermal conductivity is an important factor in the design of energy foundations and other ground heat exchanger systems. It can be determined by a field thermal response test, which is both costly and time consuming, but tests a large volume of soil. Alternatively, cheaper and quicker laboratory test methods may be applied to smaller soil samples. This paper investigates two different laboratory methods: the steady-state thermal cell and the transient needle probe. U100 soil samples were taken during the site investigation for a small diameter test pile, for which a thermal response test was later conducted. The thermal conductivities of the samples were measured using the two laboratory methods. The results from the thermal cell and needle probe were significantly different, with the thermal cell consistently giving higher values for thermal conductivity. The main difficulty with the thermal cell was determining the rate of heat flow, as the apparatus experiences significant heat losses. The needle probe was found to have fewer significant sources of error, but tests a smaller soil sample than the thermal cell. However, both laboratory methods gave much lower values of thermal conductivity compared to the in situ thermal response test. Possible reasons for these discrepancies are discussed, including sample size, orientation and disturbance
- …
