7,890 research outputs found

    Surface temperature mapping with infrared photographic pyrometry

    Get PDF
    Infrared photographic pyrometry method measures and maps the temperature distribution on a heated surface with accuracy and precision. This method involves the collection, detection and measurement of a narrow bandwidth of emitted infrared radiation. Standard commercially-available equipment is used, together with systematic procedures

    Advances in turbine blade temperature measurements

    Get PDF
    Radiation pyrometry principles and imaging methods like photography and photoelectric scanning are combined to make accurate research quality temperature measurements on turbine airfoils. Two systems are described for obtaining detailed temperature distribution measurements: an infrared photographic system for stationary vanes and a photoelectric scanning system for rotating blades. An overview is presented outlining the design, calibration methods, and recent test results

    A method for measuring cooling air flow in base coolant passages of rotating turbine blades

    Get PDF
    Method accurately determines actual coolant mass flow rate in cooling passages of rotating turbine blades. Total and static pressures are measured in blade base coolant passages. Mass flow rates are calculated from these measurements of pressure, measured temperature and known area

    Measurement of transient strain and surface temperature on simulated turbine blades using noncontacting techniques

    Get PDF
    Noncontacting techniques were used to measure strain and temperature in thermally cycled simulated turbine blades. An electro-optical extensometer was used to measure the displacement between parallel targets mounted on the leading edge of the blades throughout a complete heating and cooling cycle. An infrared photographic pyrometry method was used to measure blade steady state surface temperature. The blade was cyclically heated and cooled by moving it into and out of a Mach 1 hot-gas stream. Transient leading edge strain and steady state surface temperature distributions are presented for blades of three different configurations

    Temperature and pressure measurement techniques for an advanced turbine test facility

    Get PDF
    A high pressure, high-temperature turbine test facility constructed for use in turbine cooling research is described. Several recently developed temperature and pressure measuring techniques are used in this facility. The measurement techniques, their status, previous applications and some results are discussed. Noncontact surface temperature measurements are made by optical methods. Radiation pyrometry principles combined with photoelectric scanning are used for rotating components and infrared photography for stationary components. Contact (direct) temperature and pressure measurements on rotating components are expected to be handled with an 80 channel rotary data package which mounts on and rotates with the turbine shaft at speeds up to 17,500 rpm. The data channels are time-division multiplexed and converted to digital words in the data package. A rotary transformer couples power and digital data to and from the shaft

    Flow measurement in base cooling air passages of a rotating turbine blade

    Get PDF
    The operational performance is decribed of a shaft-mounted system for measuring the air mass flow rate in the base cooling passages of a rotating turbine blade. Shaft speeds of 0 to 9000 rpm, air mass flow rates of 0.0035 to 0.039 kg/sec (0.0077 to 0.085 lbm/sec), and blade air temperatures of 300 to 385 K (80 to 233 F) were measured. Comparisons of individual rotating blade flows and corresponding stationary supply orifice flows agreed to within 10 percent

    High-resolution surface temperature measurements on rotating turbine blades with an infrared pyrometer

    Get PDF
    A high-resolution pyrometer was developed and tested on a modified turbine engine. The pyrometer was used to obtain temperature profiles of the viewed surface of turbine blades in the engine at tip speeds up to 366 meters per second. The combination of coherent fiber optics, a silicon avalanche detector, and high-speed electronics enabled surface resolution of a spot diameter of 0.05 centimeter. The data, in the form of temperature profiles, was obtained in near real time as a hard copy output from a computer display terminal. Temperatures measured with the pyrometer and with thermocouples agreed within 2 percent at temperatures between 977 to 1144 K

    Surface temperature mapping with infrared photographic pyrometry for turbine cooling investigations

    Get PDF
    Surface temperature mapping with infrared photographic pyrometry for turbine cooling investigation

    The case for a wet, warm climate on early Mars

    Get PDF
    Arguments are presented in support of the idea that Mars possessed a dense CO2 atmosphere and a wet, warm climate early in its history. The plausibility of a CO2 greenhouse is tested by formulating a simple model of the CO2 geochemical cycle on early Mars. By scaling the rate of silicate weathering on Earth, researchers estimated a weathering time constant of the order of several times 10 to the 7th power years for early Mars. Thus, a dense atmosphere could have existed for a geologically significant time period (approx. 10 to the 9th power years) only if atmospheric CO2 was being continuously resupplied. The most likely mechanism by which this could have been accomplished is the thermal decomposition of carbonate rocks induced directly or indirectly by intense, global scale volcanism

    A Demonstration of LISA Laser Communication

    Full text link
    Over the past few years questions have been raised concerning the use of laser communications links between sciencecraft to transmit phase information crucial to the reduction of laser frequency noise in the LISA science measurement. The concern is that applying medium frequency phase modulations to the laser carrier could compromise the phase stability of the LISA fringe signal. We have modified the table-top interferometer presented in a previous article by applying phase modulations to the laser beams in order to evaluate the effects of such modulations on the LISA science fringe signal. We have demonstrated that the phase resolution of the science signal is not degraded by the presence of medium frequency phase modulations.Comment: minor corrections found in the CQG versio
    corecore