
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19760011037 2020-03-22T16:25:38+00:00Z



NASA TECHNICAL
MEMORANDUM

00
P_
oo

x
(NASA-TM-X-71878) ADVANCES IN 

TURBINE BLADETEMPERATURE MEASUREMENTS
$3.50	 (NASA)	 8 p HCN 

Q	 CSCL 21E
z

NASA TM X-71878

N76-18125

Unclas
63/07 18501

1

W.

ADVANCES IN TURBINE BLADE TEMPERATURE MEASUREMENTS

By Frank G. Pollack
Lewis Research Center
Cleveland, Ohio 44135

TECHNICAL PAPER to be presented at
Twenty-second International Instrumentation	 St^F

Symposium sponsored by the Instrument 	 r'. 
NPN ̂ t	

^`s,

Society of America 	
Vf	

11San Diego, California, May 25-27, 1976	
',t



N
n
^o
m

m

ADVANCES IN TURBINE BLADE TEMPERATURE MEASUREMENTS

by Frank G. Pollack
NASA-Lewis Research Center

Cleveland, Ohio

1

ABSTRACT

Radiation pyrometry principles and imaging methods

like photography and photoelectric scanning are

combined to make accurate research quality tempera-
ture measurements on turbine airfoils. Two systems

are described for obtaining detailed temperature

distribution measurements: an infrared photo-

graphic system for stationary vanes and a photo-

electric scanning system for rotating blades. An

overview is presented outlining the design, cali-

bration methods, and recent test results.

INTRODUCTION

Some operational het engines use cooled turbine

airfoils because they can uperate with higher tur-

bine inlet gas temperatures and thereby obtain

higher engine efficiency. The upper limit on the

turbine inlet gas temperature is strongly deter-

r.ned by the required turbine life which is a

fimction of airfoil temperature and stress levels.

Tie goal of turbine cooling design is to maintain

the airfoils at the design temperature without pro-

ducing any severe thermal gradients on the airfoil

surface.

Surface temperature distributions are used to ex-

perimentally evaluate the performance of cooled

turbine vanes and blades in ground based turbine

test facilities. The temperature distribution

measurement techniques described herein greatly

assist in heat transfer, thermal stress, and blade

life studies as well as provide correlation with

analytical prediction methods. Because these

studies require high resolution thermal maps of

vanes and blades, non-contacting optical methods

capable of obtaining such detail were investigated.

An infrared (IR) photographic method was selected

for temperature measurements of stationary vanes.

This method uses conventional photographic equip-

ment along with a densitometer and a computer for

film data reduction. A photoelectric scanning

system was developed for obtaining temperature dis-

tribution measurements on rotating turbine blades

having blade tip speeds up to about 400 meters-per-

second.This turbine blade pyrometer coml,ines

fiber opt Ica with high speed electronics and also

uses a computer for data reduction. An overview of

each customized system design, calibration method,

and recent test results are presented. Details of

the systems have been reported in references 1, 2,
and 3.

TEMPERATURE DISTRIBUTION MEASUREMENTS

Radiation pyrometry techniques presently in use for

turbine cooling studies measure the intensity of a
narrow bandwidth of near IR radiation emitted by

the airfoil surface. Surface temperature is then

calculated from the received radiation by using

suitable calibration techniques. By combining ra-

diation pyrometry principles with imaging methods,

it is possible to obtain research quality tempera-
ture measurements over a considerable area of an

airfoil with high spatial resolution.

The present approach followed at the Lewis Research

Center is illustrated in figure 1. A suitable

viewing system, interfaced with the test rig, gains

viewing access to either the turbine vanes or

blades. Surface radiance distribution is recorded

using IR photography for stationary vanes, and

photoelectric scanning for rotating blades. With

the photographic method, a thermal image of a

heated vane is first formed on film and later the

film density distribution is converted into a sur-

face temperature distribution. With the photo-

electric method, the rotating blade is scanned and
the detector output is converted into temperature

in near real time.

Surfaces emit radiation as a function of their abso-

lute temperature. The curves in the insert in

figure 1 show the typical intensity variation with

wavelength for several temperatures covering the

range of interest for turbines. The shaded area in

the near IR region indicates the general bandwidth

measured with both systems. Sufficient power is

radiated here to permit the measurement of tempera-

tures (900 K to 1400 K) of interest. In addition,

radiant emissions and absorptions from completely

combusted jet fuels have negligible interfering

line or band radiation in this interval. The wave-

length interval is also within the optical region

which permits the use of conventional optical tech-

niques and equipment. Finally, the radiated energy

In this interval increases rapidly with small in-

creases in temperature, thereby inherently provid-

ing high sensitivity.



IR Photography Method

The IR Photographic method In use for stationary
vane temperature measurements is shown in block
diagram form in figure 2. This method is used to
obtain a surface temperature map of a heated vane
in hot gas test rig with an optical view port. The
system consists of a remote-controlled camera (1)
to image the vane radiation through an IR filter
onto the IR sensitive film; a film processor (2); a
microdensitometer (3) to measure and record film
density information over the entire thermal image;
and a computer (4) proviled with calibration data
to calculate the temperature distribution from the
film density record. The final result is a turbine
vane temperature record (5) consisting of tempera-
ture profiles and two-dimensional contour maps of
temperature distribution.

The calibration technique is detailed in refer-
ence 1. An area of each film is exposed with a
calibrated relative energy scale (step tablet on
grey scale). This exposure determines the film
(detector) response curve. The film response curve
is then correlated with a temperature distribution
curve. This latter curve is the distribution of
relative radiant energy with temperature and is a
plot of Plancks equation integrated over the band-
width of detection which is determined by the fil-
ter transmission function and the IR film spectral
sensitivity. A thermocouple located on the vane
surface in the field was used as a reference point.
At this point, one known temperature and one known
density are used to correlate the two curves. No
correction for surface emittance is required with
the relative method of temperature calibration.

The advantage of the IR Photographic method is that
a thermal image of a vane can be recorded in a
fraction of a second and can also be resolved into
very small spot sizes with a microdensitometer. A
thermal image for a particular camera exposure is
limited to an average temperature span of about
200 K. However, this is more than is required for
properly designed cooling schemes. A possible dis-
advantage of the method is that temperature data
are not available during the time of the test.
There is usually a delay of several hours up to a
day because of the sequence of procedures required.
In most cases, this is not a serious drawback, and
the detailed information available from a thermal
image analysis compensates for the delay in time.

An example of a recent image analysis is shown in
figure 3. For these tests, a film-cooled turbine
vane was heated ir. a 1530 K gas stream in a thermal
stress rig. A conventional photograph of the test
vane is included in the figure and 1s used for
dimensional reference as well as to locate surface
features. The thermal image of the heated vane was
recorded on 35 mm high speed IR film at a magnifi-
cation of 0.2. A microdensitometer with a small
measuring aperature was used to scan the image in
two modes. (The equivalent measuring spot size on
the vane itself was 0.05 cm.) One mode recorded a
density profile scan (10x size) across the image.
In this example, it was at the mid span location.
The other mode records a contour map (10x size) in
equal density increments over the entire thermal

image. The density scale on the profile scan was
calibrated into a temperature scale using the ref-
erence thermocouple and the calibration technique
previously described. The contour# on the map were
converted into temperature by projecting correspond-
ing locations from the mid-span profile curve to
the contour map at the mid span location. Gener-
ally, all contours can be calibrated from one or
two profile scans. In similar tests, vanes were
instrumented with an array of thermocouples. Using
one thermocouple as a reference point, the photo-
graphically determined temperatures at all other
thermocouple locations agrsed to within 1% of the
temperature (expressed in C) measured by the
thermocouples.

Photoelectric Scanning Method

The customized photoelectric system developed for
temperature measurement on rotating blades is
referred to as a turbine blade pyrometer (TBP). The
optics together with the high speed electronics of
the TBP are capable of resolving a spot diameter of
0.05 cm on a blade moving with speeds of the order
of 300 to 400 meters-per-second. Near real time
displays of temperature profile are generated for a
single blade or for small groups of blades at steady
state conditions.

A block diagram of the TBP interfaced with a test
engine is shown in figure 4. The protected fiber-
optic probe (1) is positioned within the engine by
an actuator and the fiber is focused in the plane of
the turbine blades. As the heated blades rotate,
the emitted radiation from the spot location
(0.05 cm dia. instantaneous field of view of the
fiber) is transferred optically to a fast response
silicon avalanche detector (2), thereby generating
a continuous high resolution intensity profile which
is monitored on an oscilloscope (3) during the en-
tire test. The amplified detector output is digi-
tized by an analog to digital (A/D) converter (4) at
ranges up to 2 MHz rate. A blade position sensor
(5) supplies a trigger signal when the first test
blade enters the field of view. Starting with this
trigger signal, a 200 point sample of the digitized
detector output is stored in a high speed memory
(6). This process may be repeated a number of times
to average out random noise. The number of test
blades (usually 1 to 8) scanned with a 200 point
sample is determined by the digitizing frequency and
the speed of the turbine. The 200 data points are
transferred from the memory at a slower rate to the
computer (7) where each point is converted into tem-
perature from a "look-up" table.

Calibration information in the "look-up" table is
obtained before 3 test by focusing the optical probe
onto an accurately known temperature source, and
relating the digital output of the A/D converter to
the temperature. A blackbody oven is used as the
temperature source. Therefore, a correction for the
surface emittance of the blade is required with this
absolute method of temperature calibration.

The timing and control logic circuit (8) provides
interchange of control between the computer, the
memory and the A/D converter. Through the logic
circuit, the operator, via the computer, has control
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over the entire TBP system. The system performs
all the required operations and presents data on a
CRT display in the form of a temperature profile
and a listing of the 200 calibrated points making
up the profile. A hard copy of the turbine blade
temperature record (9) is made in the test cell in
about 3 seconds. In addition to generating a
single temperature profile scan record, the system
can also obtain a aeries of scans over a range of
radial locations, using the probe actuator, and
present them in an isometric view. These data can
alternatively be presented as a two-dimensional
contour map of temperature distribution with addi-
tional computer processing.

(2) Buchele, D. R. and Lesco, D. J. 1972. "Pyrom-
eter for Measuring Surface Temperature Distri-
bution on a Rotating Turbine Blade," National
Aeronautics and Space Administration Tech Memo
X-68113.

(3) Uguccini, 0. W.; Pollack, F. G.: High Resolu-
tion Surface Temperature Measurements on Rotat-
ing Turbine Blades with an Infrared Pyrometer.
Proposed NASA Technical Note.

An example of data obtained with the TBP system
during an engine test is illustrated in figure 5.
A group of convention cooled turbine test blades
shown in the figure were instrumented with surface
thermocouples. One blade contained a ceramic coat-
ing on the surface in the form of a chevron pattern
to examine the spatial resolution of the system.
Turbine inlet gas temperature was 1644 K while max-
imum blade temperature was limited to 1200 K by
adjusting coolant flow. The tip speed of the blade
was 366 meters-per-second. Typical temperature
profiles are shown on the lower part of the figure.
In the center is an isometric display of tempera-
ture profiles made across the chevron pattern at
the scan line locations (1 thru 8) indicated on the
blades. The origin is progressively offset with
each scan. The isometric view is used to obtain a
qualitative record of temperature distribution over
the area bounded by the scans as well as to observe
surface features like the chevron pattern. The
apparent lower temperature of the chevron is due to
its lower emittance. In the lower part of fig-
ure 5 is a quantitative temperature profile at scan
location number three. The listing of the 200 cal-
ibrated point temperatures comprising the scan is
available as another form of output presentation.
Comparison of TBP and thermocouple measured temper-
atures agreed 8o within two percent of temperature
(expressed in	 C).

CONCLUDING REMARKS

At the Lewis Research Center IF, photography has
been used on several test rigs to investigate the
effects of various cooling designs and for funda-
mental heat transfer studies. The turbine blade
pyrometer was used to monitor and measure turbine
blade temperature during uncoated and thermal bar-
rier coated blade tests. Each technique has demon-
strated the ability to produce research quality
temperature distribution measurements.

Both techniques will be used in new test facili-
ties. Updated and modified versions of the present
systems are under development for use with higher
temperature and pressure turbine test rigs.
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Figure 3. - Turbine vane temperature record.
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