1,198 research outputs found

    On the prediction of the ignition delay time of bio-syngas

    Get PDF
    The growing energy demand and more stringent environmental regulations have raised concerns about the production and use of alternative fuels. Due to the potential application of the resulting gaseous streams in turbines as an energy source, slow pyrolysis of biomass including municipal waste have been extensively studied under various situations and atmospheric conditions. Nevertheless, the combustion characteristics of these complex mixtures and the chemical interactions between their constituent species are still not fully understood. Hence, the accuracy of commonly used empirical-based mixing rules for the estimation of the overall reactivity, such as laminar burning velocity and ignition delay time is inefficient. This work is addressed to the numerical prediction of the Ignition Delay Time, IDT, of bio-syngas mixtures at different fuel compositions, stoichiometries, temperature, and pressure, by means of a detailed kinetic model. A simplified tool for preliminary evaluation of the overall reactivity with respect to the above-mentioned conditions was proposed for these mixtures, as well, providing an effective feature for safety and management evaluations

    Reduced combustion mechanism for fire with light alcohols

    Get PDF
    The need for sustainable energy has incentivized the use of alternative fuels such as light alcohols. In this work, reduced chemistry mechanisms for the prediction of fires (pool fire, tank fire, and flash fire) for two primary alcohols—methanol and ethanol—were developed, aiming to integrate the detailed kinetic model into the computational fluid dynamics (CFD) model. The model accommodates either the pure reactants and products or other intermediates, including soot precursors (C2H2, C2H4, and C3H3 ), which were identified via sensitivity and reaction path analyses. The developed reduced mechanism was adopted to predict the burning behavior in a 3D domain and for the estimation of the product distribution. The agreement between the experimental data from the literature and estimations resulting from the analysis performed in this work demonstrates the successful application of this method for the integration of kinetic mechanisms and CFD models, opening to an accurate evaluation of safety scenarios and allowing for the proper design of storage and transportation systems involving light alcohols

    On the Mechanical Energy Involved in the Catastrophic Rupture of Liquid Hydrogen Tanks

    Get PDF
    Hydrogen can play a central role in the energy transition thanks to its unique properties. However, its low density is one of the main drawbacks. The liquefaction process can drastically increase its density up to virtually 71 kg m-3 at atmospheric pressure and -253°C (NIST, 2019). The safety knowledge gap on physical explosions is still broad in the case of liquid hydrogen (LH2). For instance, it is unclear what are the consequences yields as well as the probabilities of a catastrophic rupture of an LH2 tank. A boiling liquid expanding vapour explosion (BLEVE) might arise after this top event. In this case, the expansion of the compressed gaseous phase is followed by the flashing of a fraction of the liquid. Moreover, combustion may occur for hydrogen since it is highly flammable. This complex phenomenon was not widely explored for LH2 yet. This study focused on the physical explosion by also considering the combustion process. Many integral models were adopted to estimate the mechanical energy developed by the explosion. The tank pressure prior to the rupture was considered below the critical one (1.298 MPa (NIST, 2019)). It was assumed that both liquid and gaseous phases are present inside the tank. The influences of the filling degree of the tank (liquid level) and the temperatures of the liquid and gaseous phases on the explosion energy were analysed. The results were compared with the ones of a previous study where similar models were employed to estimate the mechanical energy of an LH2 tank with different initial conditions (Ustolin et al., 2020a). In particular, the effect of the combustion process on the explosion energy and shock wave overpressure was not accounted for. The aim of this study is to conduct a comparison between different models and assess which are the most and the least conservative. The outcomes of this work provide critical suggestions on the consequence analysis of cryogenic liquefied gas vessels explosions

    Multiplicação in vitro de amoreira-preta cultivar Brazos.

    Get PDF
    A micropropagação da amoreira-preta pode gerar plantas livres de vírus e em curto espaço de tempo. Com o objetivo de aprimorar técnicas de micropropagação de amoreira-preta cultivar Brazos (Rubus idaeus L.), segmentos nodais, oriundos de plântulas preestabelecidas in vitro foram excisados e inoculados em meio WPM (0, 50, 100, 150 e 200%), suplementado com diferentes concentrações de BAP (0; 0,5; 1,0; 2,0 e 4,0 mg L-1). Após a inoculação, os explantes foram transferidos para sala de crescimento a 27±1ºC, irradiância de 35 mmol m 2 s 1 e fotoperíodo de 16 horas, onde permaneceram por 60 dias. O delineamento experimental utilizado foi inteiramente casualizado, utilizando-se de quatro repetições com quatro explantes cada. Maior número de brotos foi proporcionado com 1,0 mg L-1 de BAP associado a 100% de meio WPM e maior comprimento médio dos brotos após 60 dias foi verificado em 1,0 mg L-1 de BAP associado a 200% de meio WPM. Maior peso de matéria seca da parte aérea foi obtido em meio WPM 200% acrescido de 0,5 mg L-1 de BAP

    Target selection of soluble protein complexes for structural proteomics studies

    Get PDF
    BACKGROUND: Protein expression in E. coli is the most commonly used system to produce protein for structural studies, because it is fast and inexpensive and can produce large quantity of proteins. However, when proteins from other species such as mammalian are produced in this system, problems of protein expression and solubility arise [1]. Structural genomics project are currently investigating proteomics pipelines that would produce sufficient quantities of recombinant proteins for structural studies of protein complexes. To investigate how the E. coli protein expression system could be used for this purpose, we purified apoptotic binary protein complexes formed between members of the Caspase Associated Recruitment Domain (CARD) family. RESULTS: A combinatorial approach to the generation of protein complexes was performed between members of the CARD domain protein family that have the ability to form hetero-dimers between each other. In our method, each gene coding for a specific protein partner is cloned in pET-28b (Novagen) and PGEX2T (Amersham) expression vectors. All combinations of protein complexes are then obtained by reconstituting complexes from purified components in native conditions, after denaturation-renaturation or co-expression. Our study applied to 14 soluble CARD domain proteins revealed that co-expression studies perform better than native and denaturation-renaturation methods. In this study, we confirm existing interactions obtained in vivoin mammalian cells and also predict new interactions. CONCLUSION: The simplicity of this screening method could be easily scaled up to identify soluble protein complexes for structural genomic projects. This study reports informative statistics on the solubility of human protein complexes expressed in E.coli belonging to the human CARD protein family
    corecore