35 research outputs found

    Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion

    Get PDF
    Toxoplasma (toxoplasmosis) and Plasmodium (malaria) use unique secretory organelles for migration, cell invasion, manipulation of host cell functions, and cell egress. In particular, the apical secretory micronemes and rhoptries of apicomplexan parasites are essential for successful host infection. New findings reveal that the contents of these organelles, which are transported through the endoplasmic reticulum (ER) and Golgi, also require the parasite endosome-like system to access their respective organelles. In this review, we discuss recent findings that demonstrate that these parasites reduced their endosomal system and modified classical regulators of this pathway for the biogenesis of apical organelles

    Eimeripain, a Cathepsin B-Like Cysteine Protease, Expressed throughout Sporulation of the Apicomplexan Parasite Eimeria tenella

    Get PDF
    The invasion and replication of Eimeria tenella in the chicken intestine is responsible for avian coccidiosis, a disease that has major economic impacts on poultry industries worldwide. E. tenella is transmitted to naïve animals via shed unsporulated oocysts that need contact with air and humidity to form the infectious sporulated oocysts, which contain the first invasive form of the parasite, the sporozoite. Cysteine proteases (CPs) are major virulence factors expressed by protozoa. In this study, we show that E. tenella expresses five transcriptionally regulated genes encoding one cathepsin L, one cathepsin B and three cathepsin Cs. Biot-LC-LVG-CHN2, a cystatin derived probe, tagged eight polypeptides in unsporulated oocysts but only one in sporulated oocysts. CP-dependant activities were found against the fluorescent substrates, Z-FR-AMC and Z-LR-AMC, throughout the sporulation process. These activities corresponded to a cathepsin B-like enzyme since they were inhibited by CA-074, a specific cathepsin B inhibitor. A 3D model of the catalytic domain of the cathepsin B-like protease, based on its sequence homology with human cathepsin B, further confirmed its classification as a papain-like protease with similar characteristics to toxopain-1 from the related apicomplexan parasite, Toxoplasma gondii; we have, therefore, named the E. tenella cathepsin B, eimeripain. Following stable transfection of E. tenella sporozoites with a plasmid allowing the expression of eimeripain fused to the fluorescent protein mCherry, we demonstrated that eimeripain is detected throughout sporulation and has a punctate distribution in the bodies of extra- and intracellular parasites. Furthermore, CA-074 Me, the membrane-permeable derivative of CA-074, impairs invasion of epithelial MDBK cells by E. tenella sporozoites. This study represents the first characterization of CPs expressed by a parasite from the Eimeria genus. Moreover, it emphasizes the role of CPs in transmission and dissemination of exogenous stages of apicomplexan parasites

    Autophagy Protein Atg3 is Essential for Maintaining Mitochondrial Integrity and for Normal Intracellular Development of Toxoplasma gondii Tachyzoites

    Get PDF
    Autophagy is a cellular process that is highly conserved among eukaryotes and permits the degradation of cellular material. Autophagy is involved in multiple survival-promoting processes. It not only facilitates the maintenance of cell homeostasis by degrading long-lived proteins and damaged organelles, but it also plays a role in cell differentiation and cell development. Equally important is its function for survival in stress-related conditions such as recycling of proteins and organelles during nutrient starvation. Protozoan parasites have complex life cycles and face dramatically changing environmental conditions; whether autophagy represents a critical coping mechanism throughout these changes remains poorly documented. To investigate this in Toxoplasma gondii, we have used TgAtg8 as an autophagosome marker and showed that autophagy and the associated cellular machinery are present and functional in the parasite. In extracellular T. gondii tachyzoites, autophagosomes were induced in response to amino acid starvation, but they could also be observed in culture during the normal intracellular development of the parasites. Moreover, we generated a conditional T. gondii mutant lacking the orthologue of Atg3, a key autophagy protein. TgAtg3-depleted parasites were unable to regulate the conjugation of TgAtg8 to the autophagosomal membrane. The mutant parasites also exhibited a pronounced fragmentation of their mitochondrion and a drastic growth phenotype. Overall, our results show that TgAtg3-dependent autophagy might be regulating mitochondrial homeostasis during cell division and is essential for the normal development of T. gondii tachyzoites

    Membrane-bound cysteine proteinase isoforms in different developmental stages of Trypanosoma cruzi.

    No full text
    Cysteine proteinase isoforms, immunologically cross-reactive with cruzipain and with a similar apparent molecular mass, have been identified in epimastigotes of Trypanosoma cruzi by extraction and phase partition using the detergent Triton X-114. These isoforms are concentrated in the microsomal fraction obtained after differential centrifugation, which is known to consist essentially of plasma membrane, can be labelled by incubation of live parasites with sulfo-NHS-biotin, and bind to cystatin-sepharose affinity columns. They are present, albeit with a different electrophoretic pattern, in the epimastigote, amastigote and trypomastigote stages of the parasite.Fil:Parussini, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Local control of sound in stochastic domains based on finite element models

    No full text
    A numerical method for optimizing the local control of sound in a stochastic domain is developed. A three-dimensional enclosed acoustic space, for example, a cabin with acoustic actuators in given locations is modeled using the nite element method in the frequency domain. The optimal local noise control signals minimizing the least square of the pres- sure eld in the silent region are given by the solution of a quadratic opti- mization problem. The developed method computes a robust local noise control in the presence of randomly varying parameters such as variations in the acoustic space. Numerical examples consider the noise experienced by a vehicle driver with a varying posture. In a model problem, a signi - cant noise reduction is demonstrated at lower frequencies.peerReviewe

    General Introduction to Polynomial Chaos and Collocation Methods

    No full text
    International audienceIn this chapter, the basic principles of two methodologies for uncertainty quantification (UQ) are discussed, namely the polynomial chaos method and the collocation method. UQ deals with the propagation of uncertainties through complex numerical models, and in the present context of the UMRIDA project, mostly computational fluid dynamics (CFD) codes. The focus is on non-intrusive methods implying that the model does not require any changes and can be used as a black box
    corecore