765 research outputs found

    On the validity of the adiabatic approximation in compact binary inspirals

    Full text link
    Using a semi-analytical approach recently developed to model the tidal deformations of neutron stars in inspiralling compact binaries, we study the dynamical evolution of the tidal tensor, which we explicitly derive at second post-Newtonian order, and of the quadrupole tensor. Since we do not assume a priori that the quadrupole tensor is proportional to the tidal tensor, i.e. the so called "adiabatic approximation", our approach enables us to establish to which extent such approximation is reliable. We find that the ratio between the quadrupole and tidal tensors (i.e., the Love number) increases as the inspiral progresses, but this phenomenon only marginally affects the emitted gravitational waveform. We estimate the frequency range in which the tidal component of the gravitational signal is well described using the stationary phase approximation at next-to-leading post-Newtonian order, comparing different contributions to the tidal phase. We also derive a semi-analytical expression for the Love number, which reproduces within a few percentage points the results obtained so far by numerical integrations of the relativistic equations of stellar perturbations.Comment: 13 pages, 1 table, 2 figures. Minor changes to match the version appearing on Phys. Rev.

    Modeling the gravitational wave signature of neutron star black hole coalescences: PhenomNSBH

    Get PDF
    Accurate gravitational-wave (GW) signal models exist for black-hole binary (BBH) and neutron-star binary (BNS) systems, which are consistent with all of the published GW observations to date. Detections of a third class of compact-binary systems, neutron-star-black-hole (NSBH) binaries, have not yet been confirmed, but are eagerly awaited in the near future. For NSBH systems, GW models do not exist across the viable parameter space of signals. In this work we present the frequency-domain phenomenological model, PhenomNSBH, for GWs produced by NSBH systems with mass ratios from equal-mass up to 15, spin on the black hole up to a dimensionless spin of χ=0.5|\chi|=0.5, and tidal deformabilities ranging from 0 (the BBH limit) to 5000. We extend previous work on a phenomenological amplitude model for NSBH systems to produce an amplitude model that is parameterized by a single tidal deformability parameter. This amplitude model is combined with an analytic phase model describing tidal corrections. The resulting approximant is accurate enough to be used to measure the properties of NSBH systems for signal-to-noise ratios (SNRs) up to 50, and is compared to publicly-available NSBH numerical-relativity simulations and hybrid waveforms constructed from numerical-relativity simulations and tidal inspiral approximants. For most signals observed by second-generation ground-based detectors within this SNR limit, it will be difficult to use the GW signal alone to distinguish single NSBH systems from either BNSs or BBHs, and therefore to unambiguously identify an NSBH system

    Numerical Simulations of Dark Matter Admixed Neutron Star Binaries

    Get PDF
    Multi-messenger observations of compact binary mergers provide a new way to constrain the nature of dark matter that may accumulate in and around neutron stars. In this article, we extend the infrastructure of our numerical-relativity code BAM to enable the simulation of neutron stars that contain an additional mirror dark matter component. We perform single star tests to verify our code and the first binary neutron star simulations of this kind. We find that the presence of dark matter reduces the lifetime of the merger remnant and favors a prompt collapse to a black hole. Furthermore, we find differences in the merger time for systems with the same total mass and mass ratio, but different amounts of dark matter. Finally, we find that electromagnetic signals produced by the merger of binary neutron stars admixed with dark matter are very unlikely to be as bright as their dark matter free counterparts. Given the increasing sensitivity of multi-messenger facilities, our analysis gives a new perspective on how to probe the presence of dark matter

    Intrinsic and extrinsic geometries of a tidally deformed black hole

    Full text link
    A description of the event horizon of a perturbed Schwarzschild black hole is provided in terms of the intrinsic and extrinsic geometries of the null hypersurface. This description relies on a Gauss-Codazzi theory of null hypersurfaces embedded in spacetime, which extends the standard theory of spacelike and timelike hypersurfaces involving the first and second fundamental forms. We show that the intrinsic geometry of the event horizon is invariant under a reparameterization of the null generators, and that the extrinsic geometry depends on the parameterization. Stated differently, we show that while the extrinsic geometry depends on the choice of gauge, the intrinsic geometry is gauge invariant. We apply the formalism to solutions to the vacuum field equations that describe a tidally deformed black hole. In a first instance we consider a slowly-varying, quadrupolar tidal field imposed on the black hole, and in a second instance we examine the tide raised during a close parabolic encounter between the black hole and a small orbiting body.Comment: 27 pages, 4 figure

    Microcorrosion Casting in Normal and Pathological Biliary Tree Morphology

    Get PDF
    The organization of the intrahepatic biliary tree was studied in three dimensions by scanning electron microscopic (SEM) corrosion casts, in normal and cholestatic rat liver. In the normal liver the observation revealed the features of the biliary passages from the bile canaliculi to the canaliculo-ductular junction, to the ductules and the bile ducts, confirming previous SEM observations. In cholestatic liver, the modifications and the proliferation of bile ductules appear clearly. Resin flow from canalicular to sinusoidal network was never observed. The method was found to be very useful in the evaluation of the architecture of the intrahepatic biliary tree, under normal as well as under pathological conditions

    Double Compact Objects III: Gravitational Wave Detection Rates

    Get PDF
    The unprecedented range of second-generation gravitational-wave (GW) observatories calls for refining the predictions of potential sources and detection rates. The coalescence of double compact objects (DCOs)---i.e., neutron star-neutron star (NS-NS), black hole-neutron star (BH-NS), and black hole-black hole (BH-BH) binary systems---is the most promising source of GWs for these detectors. We compute detection rates of coalescing DCOs in second-generation GW detectors using the latest models for their cosmological evolution, and implementing inspiral-merger-ringdown (IMR) gravitational waveform models in our signal-to-noise ratio calculations. We find that: (1) the inclusion of the merger/ringdown portion of the signal does not significantly affect rates for NS-NS and BH-NS systems, but it boosts rates by a factor 1.5\sim 1.5 for BH-BH systems; (2) in almost all of our models BH-BH systems yield by far the largest rates, followed by NS-NS and BH-NS systems, respectively, and (3) a majority of the detectable BH-BH systems were formed in the early Universe in low-metallicity environments. We make predictions for the distributions of detected binaries and discuss what the first GW detections will teach us about the astrophysics underlying binary formation and evolution.Comment: published in ApJ, 19 pages, 11 figure

    Black-hole remnants from black-hole-neutron-star mergers

    Get PDF
    Observations of gravitational waves and their electromagnetic counterparts may soon uncover the existence of coalescing compact binary systems formed by a stellar-mass black hole and a neutron star. These mergers result in a remnant black hole, possibly surrounded by an accretion disk. The mass and spin of the remnant black hole depend on the properties of the coalescing binary. We construct a map from the binary components to the remnant black hole using a sample of numerical-relativity simulations of different mass ratios q, (anti)aligned dimensionless spins of the black hole aBH, and several neutron star equations of state. Given the binary total mass, the mass and spin of the remnant black hole can therefore be determined from the three parameters (q,aBH,Λ), where Λ is the tidal deformability of the neutron star. Our models also incorporate the binary black hole and test-mass limit cases and we discuss a simple extension for generic black-hole spins. We combine the remnant characterization with recent population synthesis simulations for various metallicities of the progenitor stars that generated the binary system. We predict that black-hole-neutron-star mergers produce a population of remnant black holes with masses distributed around 7 M and 9 M. For isotropic spin distributions, nonmassive accretion disks are favored: no bright electromagnetic counterparts are expected in such mergers

    إعداد مواد تعليمية لتنمية المهارات اللغوية لطلبة الصفّ الأول المتوسّط: بحث تطويريّ بمدرسة التوحيد المتوسّطة الدينية بنكالان مادورا.

    Get PDF
    Kegiatan Pembelajaran Bahasa Arab di Madrasah Diniah Tsanawiyah “At tauhid” Bangkalan Madura masih menggunakan buku ajar yang tidak sesuai, adapun kitab yang digunakan hanya memacu pada ketrampilan berbicara saja tidak pada 4 ketrampilan bahasa seperti mendengar, berbicara, membaca, menulis dan didalam kitab tersebut tidak terdapat latihan soal yang dapat memicu kemampuan bahasa arab para santri disana.maka dari itu penulis ingin mendesain bahan ajar yang bagus dan sesuai kurikulum 2013 kementrian agama RI karena kurikulum dapat membantu untuk mentertibkan proses belajar mengajar pada sekolah khususnya dalam pembuatan materi ajar bagi penulis. Penulis menggunakan metode Research and Developmentdengan pendekatan kuantitatif dan kualitatif untuk menganalisa data dan nilai, serta menjelaskan efektifitas penerapan Materi Ajar dalam pembelajaran bahasa arab adapun sampelnya adalah para santri kelas 1 tingkat Tsanawiyah yang berjumlah 15 santriwan/i. adapun teknik pengumpulan data penelitian ini yaitu: Observasi, interview, tes, dan dokumentasi. Dan hasil penelitian ini adalah: 1)Pengembangan bahan ajar yang terdesain memiliki beberapa proses tahap pembuatan agar memiliki karakter sebagai peningkatan kemampuan bahasa. 2)Adapun penerapannya dilihat dari proses pembuatan, langkah – langkah, dan ujicoba. 3)Adanya efektifitas dari materi ajar dibuktokan dengan adanya perubahan dari nilai pretest dan post test berdasarkan atas perbandingan t-hitung dan t-tabel yang menunjukkan t-hitung lebih besar dari pada t-tabel

    Constraint propagation equations of the 3+1 decomposition of f(R) gravity

    Full text link
    Theories of gravity other than general relativity (GR) can explain the observed cosmic acceleration without a cosmological constant. One such class of theories of gravity is f(R). Metric f(R) theories have been proven to be equivalent to Brans-Dicke (BD) scalar-tensor gravity without a kinetic term. Using this equivalence and a 3+1 decomposition of the theory it has been shown that metric f(R) gravity admits a well-posed initial value problem. However, it has not been proven that the 3+1 evolution equations of metric f(R) gravity preserve the (hamiltonian and momentum) constraints. In this paper we show that this is indeed the case. In addition, we show that the mathematical form of the constraint propagation equations in BD-equilavent f(R) gravity and in f(R) gravity in both the Jordan and Einstein frames, is exactly the same as in the standard ADM 3+1 decomposition of GR. Finally, we point out that current numerical relativity codes can incorporate the 3+1 evolution equations of metric f(R) gravity by modifying the stress-energy tensor and adding an additional scalar field evolution equation. We hope that this work will serve as a starting point for relativists to develop fully dynamical codes for valid f(R) models.Comment: 25 pages, matches published version in CQG, references update

    Bioinformatics in Italy: BITS2011, the Eighth Annual Meeting of the Italian Society of Bioinformatics

    Get PDF
    The BITS2011 meeting, held in Pisa on June 20-22, 2011, brought together more than 120 Italian researchers working in the field of Bioinformatics, as well as students in Bioinformatics, Computational Biology, Biology, Computer Sciences, and Engineering, representing a landscape of Italian bioinformatics research
    corecore